IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2914-d1670206.html
   My bibliography  Save this article

ARIMA Markov Model and Its Application of China’s Total Energy Consumption

Author

Listed:
  • Chingfei Luo

    (School of Statistics, Beijing Normal University, Beijing 100875, China)

  • Chenzi Liu

    (School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China)

  • Chen Huang

    (Business School, Sun Yat-sen University, Shenzhen 518107, China)

  • Meilan Qiu

    (School of Mathematics and Statistics, Huizhou University, Huizhou 516007, China)

  • Dewang Li

    (School of Mathematics and Statistics, Huizhou University, Huizhou 516007, China)

Abstract

We propose an auto regressive integrated moving average Markov model (ARIMAMKM) for predicting annual energy consumption in China and enhancing the accuracy of energy consumption forecasts. This novel model extends the traditional auto regressive integrated moving average (ARIMA( p , d , q )) model. The stationarity of China’s energy consumption data from 2000 to 2018 is assessed, with an augmented Dickey–Fuller (ADF) test conducted on the d -order difference series. Based on the auto correlation function (ACF) and partial auto correlation function (PACF) plots of the difference time series, the optimal parameters p and q are selected using the Akaike information criterion (AIC) and Bayesian information criterion (BIC), thereby determining the specific ARIMA configuration. By simulating real values using the ARIMA model and calculating relative errors, the estimated values are categorized into states. These states are then combined with a Markov transition probability matrix to determine the final predicted values. The ARIMAMKM model is validated using China’s energy consumption data, achieving high prediction accuracy as evidenced by metrics such as mean absolute percentage error (MAPE), root mean square error (RMSE), S T D , and R 2 . Comparative analysis demonstrates that the ARIMAMKM model outperforms five other competitive models: the grey model (GM(1,1)), ARIMA(0,4,2), quadratic function model (QFM), nonlinear auto regressive neural network (NAR), and fractional grey model (FGM(1,1)) in terms of fitting performance. Additionally, the model is applied to Guangdong province’s resident population data to further verify its validity and practicality.

Suggested Citation

  • Chingfei Luo & Chenzi Liu & Chen Huang & Meilan Qiu & Dewang Li, 2025. "ARIMA Markov Model and Its Application of China’s Total Energy Consumption," Energies, MDPI, vol. 18(11), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2914-:d:1670206
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2914/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2914/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yunxin Zhang & Huan Guo & Xin Xiong & Wendong Yang, 2022. "Forecasting Chinese Carbon Emissions from Fossil Energy Based on the Fractional Order Cumulative Multivariate Grey Model," Journal of Mathematics, Hindawi, vol. 2022, pages 1-9, August.
    2. Songyao Wang & Zhisheng Zhang, 2021. "Short-Term Multiple Load Forecasting Model of Regional Integrated Energy System Based on QWGRU-MTL," Energies, MDPI, vol. 14(20), pages 1-13, October.
    3. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    4. Ding, Song & Hipel, Keith W. & Dang, Yao-guo, 2018. "Forecasting China's electricity consumption using a new grey prediction model," Energy, Elsevier, vol. 149(C), pages 314-328.
    5. ZhenHua Li & ZhiHong Zou & Yang Yu, 2019. "Forecasting of Wastewater Discharge and the Energy Consumption in China Based on Grey Model," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-9, March.
    6. Xu, Ning & Dang, Yaoguo & Gong, Yande, 2017. "Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China," Energy, Elsevier, vol. 118(C), pages 473-480.
    7. Yuzhen Chen & Suzhen Li & Shuangbing Guo & Wendong Yang, 2022. "A Novel Fractional Hausdorff Discrete Grey Model for Forecasting the Renewable Energy Consumption," Journal of Mathematics, Hindawi, vol. 2022, pages 1-23, October.
    8. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    2. Ding, Song & Li, Ruojin & Wu, Shu & Zhou, Weijie, 2021. "Application of a novel structure-adaptative grey model with adjustable time power item for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 298(C).
    3. Liu, Chong & Wu, Wen-Ze & Xie, Wanli & Zhang, Jun, 2020. "Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Liu, Yitong & Xue, Dingyu & Yang, Yang, 2021. "Two types of conformable fractional grey interval models and their applications in regional electricity consumption prediction," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    5. Peng Zhang & Xin Ma & Kun She, 2019. "Forecasting Japan’s Solar Energy Consumption Using a Novel Incomplete Gamma Grey Model," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    6. Xie, Wanli & Wu, Wen-Ze & Liu, Chong & Zhao, Jingjie, 2020. "Forecasting annual electricity consumption in China by employing a conformable fractional grey model in opposite direction," Energy, Elsevier, vol. 202(C).
    7. Libo Zhang & Qian Du & Dequn Zhou, 2021. "Grid Parity Analysis of China’s Centralized Photovoltaic Generation under Multiple Uncertainties," Energies, MDPI, vol. 14(7), pages 1-19, March.
    8. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    9. Ding, Song, 2018. "A novel self-adapting intelligent grey model for forecasting China's natural-gas demand," Energy, Elsevier, vol. 162(C), pages 393-407.
    10. Wang, Lin & Hu, Huanling & Ai, Xue-Yi & Liu, Hua, 2018. "Effective electricity energy consumption forecasting using echo state network improved by differential evolution algorithm," Energy, Elsevier, vol. 153(C), pages 801-815.
    11. Luo, Xilin & Duan, Huiming & He, Leiyuhang, 2020. "A Novel Riccati Equation Grey Model And Its Application In Forecasting Clean Energy," Energy, Elsevier, vol. 205(C).
    12. Qian, Wuyong & Wang, Jue, 2020. "An improved seasonal GM(1,1) model based on the HP filter for forecasting wind power generation in China," Energy, Elsevier, vol. 209(C).
    13. Zhou, Weijie & Wu, Xiaoli & Ding, Song & Pan, Jiao, 2020. "Application of a novel discrete grey model for forecasting natural gas consumption: A case study of Jiangsu Province in China," Energy, Elsevier, vol. 200(C).
    14. Huiping Wang & Zhun Zhang, 2022. "Forecasting CO 2 Emissions Using A Novel Grey Bernoulli Model: A Case of Shaanxi Province in China," IJERPH, MDPI, vol. 19(9), pages 1-22, April.
    15. Huang, Liqiao & Liao, Qi & Qiu, Rui & Liang, Yongtu & Long, Yin, 2021. "Prediction-based analysis on power consumption gap under long-term emergency: A case in China under COVID-19," Applied Energy, Elsevier, vol. 283(C).
    16. Huiping Wang & Yi Wang, 2022. "Estimating per Capita Primary Energy Consumption Using a Novel Fractional Gray Bernoulli Model," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    17. Wu, Wen-Ze & Pang, Haodan & Zheng, Chengli & Xie, Wanli & Liu, Chong, 2021. "Predictive analysis of quarterly electricity consumption via a novel seasonal fractional nonhomogeneous discrete grey model: A case of Hubei in China," Energy, Elsevier, vol. 229(C).
    18. Wang, Zheng-Xin & Wang, Zhi-Wei & Li, Qin, 2020. "Forecasting the industrial solar energy consumption using a novel seasonal GM(1,1) model with dynamic seasonal adjustment factors," Energy, Elsevier, vol. 200(C).
    19. Li, Hui & Duan, Huiming & Song, Yuxin & Wang, Xingwu, 2025. "A novel conformable fractional logistic grey model and its application to natural gas and electricity consumption in China," Renewable Energy, Elsevier, vol. 243(C).
    20. Xiong, Xin & Hu, Xi & Guo, Huan, 2021. "A hybrid optimized grey seasonal variation index model improved by whale optimization algorithm for forecasting the residential electricity consumption," Energy, Elsevier, vol. 234(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2914-:d:1670206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.