IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v190y2020ics0360544219321395.html
   My bibliography  Save this article

Decarbonising electricity systems in major cities through renewable cooperation – A case study of Beijing and Zhangjiakou

Author

Listed:
  • Huang, Xiaodan
  • Zhang, Hongyu
  • Zhang, Xiliang

Abstract

It is essential to decarbonise the electricity systems in the city-level, especially the major cities, such as Beijing. This work explores how major cities can decarbonise their electricity systems through renewable cooperation by conducting a case study of Beijing and Zhangjiakou. Beijing, as a city with deficient renewable resources, is well suited for electricity cooperation with the city of Zhangjiakou, which will co-host the 2022 Winter Olympics with Beijing and have rich renewable resources. We therefore construct an hourly Zhangjiakou–Beijing Renewable Electricity Cooperation (Z-BREC) system based on the EnergyPLAN model. Four scenarios—restricted/unrestricted Zhangjiakou with/without energy storage scenarios—are simulated and analysed. We present a method of calculating the range for two cities to cooperate over renewable electricity and analyse detailed hourly output curves in exploring the role of energy storage. Additionally, a sensitivity analysis is conducted on the effects of the transmission capacity and losses in the transmission and distribution system. Results show that the amount of renewable electricity that can potentially be exported from Zhangjiakou to Beijing is 19.7–31.8 TW h in 2020 and 45.0–61.5 TW h in 2030, respectively accounting for 17%–27% and 30%–41% of Beijing’s electricity demand. By 2030, energy storage can increase the amount of generated renewable energy exported from Zhangjiakou to Beijing by 4.8–5.65 TW h.

Suggested Citation

  • Huang, Xiaodan & Zhang, Hongyu & Zhang, Xiliang, 2020. "Decarbonising electricity systems in major cities through renewable cooperation – A case study of Beijing and Zhangjiakou," Energy, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:energy:v:190:y:2020:i:c:s0360544219321395
    DOI: 10.1016/j.energy.2019.116444
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219321395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116444?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nadine Ibrahim, 2017. "Decarbonization unique to cities," Nature Climate Change, Nature, vol. 7(10), pages 690-691, October.
    2. Andersen, Poul H. & Mathews, John A. & Rask, Morten, 2009. "Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for electric vehicles," Energy Policy, Elsevier, vol. 37(7), pages 2481-2486, July.
    3. John Byrne & Job Taminiau & Kyung Nam Kim & Jeongseok Seo & Joohee Lee, 2016. "A solar city strategy applied to six municipalities: integrating market, finance, and policy factors for infrastructure‐scale photovoltaic development in Amsterdam, London, Munich, New York, Seoul, an," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(1), pages 68-88, January.
    4. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    5. Bačeković, Ivan & Østergaard, Poul Alberg, 2018. "Local smart energy systems and cross-system integration," Energy, Elsevier, vol. 151(C), pages 812-825.
    6. Sovacool, Benjamin K. & Kester, Johannes & de Rubens, Gerardo Zarazua & Noel, Lance, 2018. "Expert perceptions of low-carbon transitions: Investigating the challenges of electricity decarbonisation in the Nordic region," Energy, Elsevier, vol. 148(C), pages 1162-1172.
    7. Zhao, Guangling & Guerrero, Josep M. & Jiang, Kejun & Chen, Sha, 2017. "Energy modelling towards low carbon development of Beijing in 2030," Energy, Elsevier, vol. 121(C), pages 107-113.
    8. Waite, Michael & Modi, Vijay, 2014. "Potential for increased wind-generated electricity utilization using heat pumps in urban areas," Applied Energy, Elsevier, vol. 135(C), pages 634-642.
    9. Wooyoung Jeon, Alberto J. Lamadrid, and Timothy D. Mount, 2019. "The Economic Value of Distributed Storage at Different Locations on an Electric Grid," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    10. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    11. Li, Hongze & Guo, Sen & Cui, Liuyang & Yan, Jiaojiao & Liu, Jiaojiao & Wang, Bao, 2015. "Review of renewable energy industry in Beijing: Development status, obstacles and proposals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 711-725.
    12. Liu, Xi & Du, Huibin & Brown, Marilyn A. & Zuo, Jian & Zhang, Ning & Rong, Qian & Mao, Guozhu, 2018. "Low-carbon technology diffusion in the decarbonization of the power sector: Policy implications," Energy Policy, Elsevier, vol. 116(C), pages 344-356.
    13. Baek, Seoin & Park, Eunil & Kim, Min-Gil & Kwon, Sang Jib & Kim, Ki Joon & Ohm, Jay Y. & del Pobil, Angel P., 2016. "Optimal renewable power generation systems for Busan metropolitan city in South Korea," Renewable Energy, Elsevier, vol. 88(C), pages 517-525.
    14. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad & Zhang, Xiliang, 2011. "Potential of renewable energy systems in China," Applied Energy, Elsevier, vol. 88(2), pages 518-525, February.
    15. Victor, Nadejda & Nichols, Christopher & Zelek, Charles, 2018. "The U.S. power sector decarbonization: Investigating technology options with MARKAL nine-region model," Energy Economics, Elsevier, vol. 73(C), pages 410-425.
    16. Liu, Li-qun & Wang, Zhi-xin & Zhang, Hua-qiang & Xue, Ying-cheng, 2010. "Solar energy development in China--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 301-311, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Kılkış, Şiir, 2021. "Transition towards urban system integration and benchmarking of an urban area to accelerate mitigation towards net-zero targets," Energy, Elsevier, vol. 236(C).
    3. Hasankhani, Arezoo & Hakimi, Seyed Mehdi, 2021. "Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market," Energy, Elsevier, vol. 219(C).
    4. Battaglia, V. & Massarotti, N. & Vanoli, L., 2022. "Urban regeneration plans: Bridging the gap between planning and design energy districts," Energy, Elsevier, vol. 254(PA).
    5. Annala, Salla & Ruggiero, Salvatore & Kangas, Hanna-Liisa & Honkapuro, Samuli & Ohrling, Tiina, 2022. "Impact of home market on business development and internationalization of demand response firms," Energy, Elsevier, vol. 242(C).
    6. Okonkwo, Eric C. & Wole-Osho, Ifeoluwa & Bamisile, Olusola & Abid, Muhammad & Al-Ansari, Tareq, 2021. "Grid integration of renewable energy in Qatar: Potentials and limitations," Energy, Elsevier, vol. 235(C).
    7. Guo, Zheyu & Zheng, Yanan & Li, Gengyin, 2020. "Power system flexibility quantitative evaluation based on improved universal generating function method: A case study of Zhangjiakou," Energy, Elsevier, vol. 205(C).
    8. Mengqi Fu & Yanyan Yang & Yong Li & Huanqin Wang & Fajun Yu & Juan Liu, 2023. "Beijing Heavy-Duty Diesel Vehicle Battery Capacity Conversion and Emission Estimation in 2022," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    9. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).
    10. Renato Passaro & Ivana Quinto & Giuseppe Scandurra & Antonio Thomas, 2020. "How Do Energy Use and Climate Change Affect Fast-Start Finance? A Cross-Country Empirical Investigation," Sustainability, MDPI, vol. 12(22), pages 1-23, November.
    11. Zhang, Mingyang & Zhou, Ming & Wu, Zhaoyuan & Yang, Hongji & Li, Gengyin, 2022. "A ramp capability-aware scheduling strategy for integrated electricity-gas systems," Energy, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Connolly, D., 2017. "Heat Roadmap Europe: Quantitative comparison between the electricity, heating, and cooling sectors for different European countries," Energy, Elsevier, vol. 139(C), pages 580-593.
    2. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    5. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    6. Fang, Yiping & Wei, Yanqiang, 2013. "Climate change adaptation on the Qinghai–Tibetan Plateau: The importance of solar energy utilization for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 508-518.
    7. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
    8. Schill, Wolf-Peter, 2011. "Electric Vehicles in Imperfect Electricity Markets: The case of Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(10), pages 6178-6189.
    9. Navid Shirzadi & Fuzhan Nasiri & Ursula Eicker, 2020. "Optimal Configuration and Sizing of an Integrated Renewable Energy System for Isolated and Grid-Connected Microgrids: The Case of an Urban University Campus," Energies, MDPI, vol. 13(14), pages 1-18, July.
    10. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    11. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    12. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    13. You, Wei & Geng, Yong & Dong, Huijuan & Wilson, Jeffrey & Pan, Hengyu & Wu, Rui & Sun, Lu & Zhang, Xi & Liu, Zhiqing, 2018. "Technical and economic assessment of RES penetration by modelling China's existing energy system," Energy, Elsevier, vol. 165(PB), pages 900-910.
    14. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    15. Liran Li & Zhiwu Huang & Heng Li & Honghai Lu, 2016. "A High-Efficiency Voltage Equalization Scheme for Supercapacitor Energy Storage System in Renewable Generation Applications," Sustainability, MDPI, vol. 8(6), pages 1-19, June.
    16. Rodrigues, E.M.G. & Godina, R. & Santos, S.F. & Bizuayehu, A.W. & Contreras, J. & Catalão, J.P.S., 2014. "Energy storage systems supporting increased penetration of renewables in islanded systems," Energy, Elsevier, vol. 75(C), pages 265-280.
    17. Zwickl-Bernhard, Sebastian & Auer, Hans, 2022. "Demystifying natural gas distribution grid decommissioning: An open-source approach to local deep decarbonization of urban neighborhoods," Energy, Elsevier, vol. 238(PB).
    18. Bao, Chao & Fang, Chuang-lin, 2013. "Geographical and environmental perspectives for the sustainable development of renewable energy in urbanizing China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 464-474.
    19. Muhammad Faizan Tahir & Haoyong Chen & Muhammad Sufyan Javed & Irfan Jameel & Asad Khan & Saifullah Adnan, 2019. "Integration of Different Individual Heating Scenarios and Energy Storages into Hybrid Energy System Model of China for 2030," Energies, MDPI, vol. 12(11), pages 1-20, May.
    20. Job Taminiau & John Byrne, 2020. "City‐scale urban sustainability: Spatiotemporal mapping of distributed solar power for New York City," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:190:y:2020:i:c:s0360544219321395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.