IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i1p301-311.html
   My bibliography  Save this article

Solar energy development in China--A review

Author

Listed:
  • Liu, Li-qun
  • Wang, Zhi-xin
  • Zhang, Hua-qiang
  • Xue, Ying-cheng

Abstract

The steady and maintainable electric power provides the development momentum of a country's industrialization, which is indispensable to every country at present. It is well known that China is the largest developing country in the world. With the rapid development of economy and society, energy demand of Chinese society is increasing in an incredible speed, i.e., the annual accumulative total capacity of electric energy is about 0.1 billion kW, and the most of them is provided by the fossil fuel resource, and the share is about 90% in China. Certainly, it is a very inappropriate energy structure, so the sustainable development of country is impossible in future, the status must be improved in order to achieve sustainable development. Fortunately, China has large country area, and there are abundant solar resources. Development and application of solar energy have been regarded by the government and ordinary people, and they thought that solar energy can provide more and more electric energy in future, and more and more actual examples have been applied in the last decades, which are supported by central government and local governments. This paper discusses the distribution zone and current developmental situation of solar energy in China. Then, some application practice is described, such as solar energy greenhouse, solar energy hearth, solar water heater, solar lighting system, solar water pump, distributed generation (DG), grid-connect photovoltaic generation (GPG) and wind-solar hybrid system. The policies and law of China central government and local governments are described in the following paragraph. At the end, the developmental prospect of photovoltaic (PV) in future China and the development barriers and recommendations are introduced.

Suggested Citation

  • Liu, Li-qun & Wang, Zhi-xin & Zhang, Hua-qiang & Xue, Ying-cheng, 2010. "Solar energy development in China--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 301-311, January.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:1:p:301-311
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(09)00206-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erdil, Erzat & Ilkan, Mustafa & Egelioglu, Fuat, 2008. "An experimental study on energy generation with a photovoltaic (PV)–solar thermal hybrid system," Energy, Elsevier, vol. 33(8), pages 1241-1245.
    2. Yang, H.X. & Lu, L. & Burnett, J., 2003. "Weather data and probability analysis of hybrid photovoltaic–wind power generation systems in Hong Kong," Renewable Energy, Elsevier, vol. 28(11), pages 1813-1824.
    3. Zhou, Zhongren & Wu, Wenliang & Wang, Xiaohua & Chen, Qun & Wang, Ou, 2009. "Analysis of changes in the structure of rural household energy consumption in northern China: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 187-193, January.
    4. Kaldellis, J.K. & Zafirakis, D., 2007. "Optimum energy storage techniques for the improvement of renewable energy sources-based electricity generation economic efficiency," Energy, Elsevier, vol. 32(12), pages 2295-2305.
    5. Zhou, Zhongren & Wu, Wenliang & Chen, Qun & Chen, Shufeng, 2008. "Study on sustainable development of rural household energy in northern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2227-2239, October.
    6. Arun, P. & Banerjee, Rangan & Bandyopadhyay, Santanu, 2008. "Optimum sizing of battery-integrated diesel generator for remote electrification through design-space approach," Energy, Elsevier, vol. 33(7), pages 1155-1168.
    7. Prasad, A. Rajendra & Natarajan, E., 2006. "Optimization of integrated photovoltaic–wind power generation systems with battery storage," Energy, Elsevier, vol. 31(12), pages 1943-1954.
    8. Wan, Kevin K.W. & Tang, H.L. & Yang, Liu & Lam, Joseph C., 2008. "An analysis of thermal and solar zone radiation models using an Angstrom–Prescott equation and artificial neural networks," Energy, Elsevier, vol. 33(7), pages 1115-1127.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chengchao & Yang, Yusheng & Zhang, Yaoqi, 2012. "Rural household livelihood change, fuelwood substitution, and hilly ecosystem restoration: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2475-2482.
    2. Hao, Daning & Qi, Lingfei & Tairab, Alaeldin M. & Ahmed, Ammar & Azam, Ali & Luo, Dabing & Pan, Yajia & Zhang, Zutao & Yan, Jinyue, 2022. "Solar energy harvesting technologies for PV self-powered applications: A comprehensive review," Renewable Energy, Elsevier, vol. 188(C), pages 678-697.
    3. Kaabeche, A. & Belhamel, M. & Ibtiouen, R., 2011. "Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system," Energy, Elsevier, vol. 36(2), pages 1214-1222.
    4. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.
    5. Jiang, Zhixiang & Dai, Yanhui & Luo, Xianxiang & Liu, Guocheng & Wang, Hefang & Zheng, Hao & Wang, Zhenyu, 2017. "Assessment of bioenergy development potential and its environmental impact for rural household energy consumption: A case study in Shandong, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1153-1161.
    6. Zhang, Ming & Su, Bin, 2016. "Assessing China's rural household energy sustainable development using improved grouped principal component method," Energy, Elsevier, vol. 113(C), pages 509-514.
    7. Liu, Li-qun & Liu, Chun-xia & Sun, Zhi-yi, 2011. "A survey of China's low-carbon application practice--Opportunity goes with challenge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2895-2903, August.
    8. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    9. Zhang, Xiongwen & Tan, Siew-Chong & Li, Guojun & Li, Jun & Feng, Zhenping, 2013. "Components sizing of hybrid energy systems via the optimization of power dispatch simulations," Energy, Elsevier, vol. 52(C), pages 165-172.
    10. Virulkar, Vasudeo & Aware, Mohan & Kolhe, Mohan, 2011. "Integrated battery controller for distributed energy system," Energy, Elsevier, vol. 36(5), pages 2392-2398.
    11. Ipsakis, Dimitris & Voutetakis, Spyros & Seferlis, Panos & Stergiopoulos, Fotis & Papadopoulou, Simira & Elmasides, Costas, 2008. "The effect of the hysteresis band on power management strategies in a stand-alone power system," Energy, Elsevier, vol. 33(10), pages 1537-1550.
    12. Ding, Wenguang & Xu, Luan & Ye, Weifeng, 2014. "A comparative study of bioenergy consumption and CO2 emissions in Tibetan region of China," Renewable Energy, Elsevier, vol. 71(C), pages 344-350.
    13. Sun, Fengchun & Hu, Xiaosong & Zou, Yuan & Li, Siguang, 2011. "Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles," Energy, Elsevier, vol. 36(5), pages 3531-3540.
    14. Ding, Wenguang & Niu, Hewen & Chen, Jinsong & Du, Jun & Wu, Yang, 2012. "Influence of household biogas digester use on household energy consumption in a semi-arid rural region of northwest China," Applied Energy, Elsevier, vol. 97(C), pages 16-23.
    15. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    16. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    17. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    18. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    19. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin, 2021. "Performance evaluation of a new hybrid system consisting of a photovoltaic module and an absorption heat transformer for electricity production and heat upgrading," Energy, Elsevier, vol. 216(C).
    20. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:1:p:301-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.