IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp2640-2651.html
   My bibliography  Save this article

The electricity industry in Spain: A structural analysis using a disaggregated input-output model

Author

Listed:
  • Duarte, Rosa
  • Langarita, Raquel
  • Sánchez-Chóliz, Julio

Abstract

This paper describes the construction and analysis of a disaggregated input-output model and its extension to a social accounting matrix (SAM) for the Spanish economy in 2013. Our focus is the specific disaggregation of the electricity industry into the generating, transmission, distribution and marketing businesses, which were decoupled in 1997 under legislation prohibiting any single company from conducting more than one of them. The multi-sectoral framework also allows disaggregation of electricity generating by production technologies (wind, nuclear, conventional thermal, hydropower, solar and other technologies). To the best of our knowledge, this is the first paper in which this information is presented in a multi-sectoral framework for the Spanish economy, which is enormously dependent on the electricity industry. The structural analysis reveals the industry's role in Spain and the importance of its activities. None of the electricity generating businesses is a Rasmussen key sector, and generating and distribution are both capital-intensive activities. Meanwhile, conventional thermal and hydropower generating together make up more than 50% of total output in value terms, while nuclear power accounts for only around 7%. Finally, imports and exports of electricity are small, and almost all demand is covered by domestic production.

Suggested Citation

  • Duarte, Rosa & Langarita, Raquel & Sánchez-Chóliz, Julio, 2017. "The electricity industry in Spain: A structural analysis using a disaggregated input-output model," Energy, Elsevier, vol. 141(C), pages 2640-2651.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2640-2651
    DOI: 10.1016/j.energy.2017.08.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217314639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.08.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Parikh, Jyoti & Panda, Manoj & Ganesh-Kumar, A. & Singh, Vinay, 2009. "CO2 emissions structure of Indian economy," Energy, Elsevier, vol. 34(8), pages 1024-1031.
    3. Cui, Lian-Biao & Peng, Pan & Zhu, Lei, 2015. "Embodied energy, export policy adjustment and China's sustainable development: A multi-regional input-output analysis," Energy, Elsevier, vol. 82(C), pages 457-467.
    4. Fujimori, Shinichiro & Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru, 2016. "Global energy model hindcasting," Energy, Elsevier, vol. 114(C), pages 293-301.
    5. Meng, F.Y. & Zhou, D.Q. & Zhou, P. & Bai, Y., 2014. "Sectoral comparison of electricity-saving potentials in China: An analysis based on provincial input–output tables," Energy, Elsevier, vol. 72(C), pages 772-782.
    6. Hartono, Djoni & Resosudarmo, Budy P., 2008. "The economy-wide impact of controlling energy consumption in Indonesia: An analysis using a Social Accounting Matrix framework," Energy Policy, Elsevier, vol. 36(4), pages 1404-1419, April.
    7. Theo Junius & Jan Oosterhaven, 2003. "The Solution of Updating or Regionalizing a Matrix with both Positive and Negative Entries," Economic Systems Research, Taylor & Francis Journals, vol. 15(1), pages 87-96, March.
    8. Pahlavan, Reza & Omid, Mahmoud & Akram, Asadollah, 2012. "Energy input–output analysis and application of artificial neural networks for predicting greenhouse basil production," Energy, Elsevier, vol. 37(1), pages 171-176.
    9. Alcantara, Vicent & Padilla, Emilio, 2003. ""Key" sectors in final energy consumption: an input-output application to the Spanish case," Energy Policy, Elsevier, vol. 31(15), pages 1673-1678, December.
    10. Manfred Lenzen & Richard Wood & Blanca Gallego, 2007. "Some Comments on the GRAS Method," Economic Systems Research, Taylor & Francis Journals, vol. 19(4), pages 461-465.
    11. Logar, Ivana & van den Bergh, Jeroen C.J.M., 2013. "The impact of peak oil on tourism in Spain: An input–output analysis of price, demand and economy-wide effects," Energy, Elsevier, vol. 54(C), pages 155-166.
    12. Ozkan, Burhan & Akcaoz, Handan & Fert, Cemal, 2004. "Energy input–output analysis in Turkish agriculture," Renewable Energy, Elsevier, vol. 29(1), pages 39-51.
    13. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    14. Kuhtz, Silvana & Zhou, Chaoying & Albino, Vito & Yazan, Devrim M., 2010. "Energy use in two Italian and Chinese tile manufacturers: A comparison using an enterprise input–output model," Energy, Elsevier, vol. 35(1), pages 364-374.
    15. Margarita Barrera-Lozano & Alfredo J. Mainar & Jos� Vall�s, 2015. "Disaggregation of sectors in social accounting matrices using a customized Wolsky method," Applied Economics Letters, Taylor & Francis Journals, vol. 22(13), pages 1020-1024, September.
    16. Wang, Wenwen & Liu, Xiao & Zhang, Ming & Song, Xuefeng, 2014. "Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China's energy consumption," Energy, Elsevier, vol. 67(C), pages 617-622.
    17. Haiyan Zhang & Michael L. Lahr & Jun Bi, 2016. "Challenges of green consumption in China: a household energy use perspective," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 183-201, June.
    18. Cansino, J.M. & Cardenete, M.A. & González-Limón, J.M. & Román, R., 2014. "The economic influence of photovoltaic technology on electricity generation: A CGE (computable general equilibrium) approach for the Andalusian case," Energy, Elsevier, vol. 73(C), pages 70-79.
    19. Ming Zhang & Yan Song, 2015. "Exploring influence factors governing the changes in China’s final energy consumption under a new framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 653-668, August.
    20. Carvalho, Ariovaldo Lopes de & Antunes, Carlos Henggeler & Freire, Fausto & Henriques, Carla Oliveira, 2015. "A hybrid input–output multi-objective model to assess economic–energy–environment trade-offs in Brazil," Energy, Elsevier, vol. 82(C), pages 769-785.
    21. Langarita, Raquel & Sánchez Chóliz, Julio & Sarasa, Cristina & Duarte, Rosa & Jiménez, Sofía, 2017. "Electricity costs in irrigated agriculture: A case study for an irrigation scheme in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1008-1019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wimmer, Lorenz & Kluge, Jan & Zenz, Hannes & Kimmich, Christian, 2023. "Predicting structural changes of the energy sector in an input–output framework," Energy, Elsevier, vol. 265(C).
    2. Langarita, Raquel & Duarte, Rosa & Hewings, Geoffrey & Sánchez-Chóliz, Julio, 2019. "Testing European goals for the Spanish electricity system using a disaggregated CGE model," Energy, Elsevier, vol. 179(C), pages 1288-1301.
    3. Miguel Angel Martin-Valmayor & Luis Alberiko Gil-Alaña, 2024. "Hourly Energy Prices in Spain - Evidence of Persistence Across Different Months," Energy RESEARCH LETTERS, Asia-Pacific Applied Economics Association, vol. 4(3), pages 1-6.
    4. Lin, Boqiang & Xu, Bin, 2018. "Growth of industrial CO2 emissions in Shanghai city: Evidence from a dynamic vector autoregression analysis," Energy, Elsevier, vol. 151(C), pages 167-177.
    5. Ramos, Carmen & García, Ana Salomé & Moreno, Blanca & Díaz, Guzmán, 2019. "Small-scale renewable power technologies are an alternative to reach a sustainable economic growth: Evidence from Spain," Energy, Elsevier, vol. 167(C), pages 13-25.
    6. C. Oliveira Henriques & S. Sousa, 2023. "A Review on Economic Input-Output Analysis in the Environmental Assessment of Electricity Generation," Energies, MDPI, vol. 16(6), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    2. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
    3. Sun, Xiaoqi & Liu, Xiaojia, 2020. "Decomposition analysis of debt’s impact on China’s energy consumption," Energy Policy, Elsevier, vol. 146(C).
    4. Edyta Sidorczuk-Pietraszko, 2020. "Spatial Differences in Carbon Intensity in Polish Households," Energies, MDPI, vol. 13(12), pages 1-21, June.
    5. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    6. Zheng, Jiali & Feng, Gengzhong & Ren, Zhuanzhuan & Qi, Nengxi & Coffman, D'Maris & Zhou, Yunlai & Wang, Shouyang, 2022. "China's energy consumption and economic activity at the regional level," Energy, Elsevier, vol. 259(C).
    7. Román, Rocío & Cansino, José M. & Rodas, José A., 2018. "Analysis of the main drivers of CO2 emissions changes in Colombia (1990–2012) and its political implications," Renewable Energy, Elsevier, vol. 116(PA), pages 402-411.
    8. Cortés-Borda, D. & Guillén-Gosálbez, G. & Jiménez, L., 2015. "Assessment of nuclear energy embodied in international trade following a world multi-regional input–output approach," Energy, Elsevier, vol. 91(C), pages 91-101.
    9. Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
    10. Tolga Kaya, 2017. "Unraveling the Energy use Network of Construction Sector in Turkey using Structural Path Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 31-43.
    11. Zhang, Ming & Song, Yan & Li, Peng & Li, Huanan, 2016. "Study on affecting factors of residential energy consumption in urban and rural Jiangsu," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 330-337.
    12. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
    13. Chong, Chin Hao & Tan, Wei Xin & Ting, Zhao Jia & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou, 2019. "The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    14. Laha, Priyanka & Chakraborty, Basab, 2017. "Energy model – A tool for preventing energy dysfunction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 95-114.
    15. He, He & Reynolds, Christian John & Li, Linyang & Boland, John, 2019. "Assessing net energy consumption of Australian economy from 2004–05 to 2014–15: Environmentally-extended input-output analysis, structural decomposition analysis, and linkage analysis," Applied Energy, Elsevier, vol. 240(C), pages 766-777.
    16. Luo, Yulong & Zeng, Weiliang & Wang, Yueqiang & Li, Danzhou & Hu, Xianbiao & Zhang, Hua, 2021. "A hybrid approach for examining the drivers of energy consumption in Shanghai," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    17. Dong, Bai & Zhang, Ming & Mu, Hailin & Su, Xuanming, 2016. "Study on decoupling analysis between energy consumption and economic growth in Liaoning Province," Energy Policy, Elsevier, vol. 97(C), pages 414-420.
    18. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.
    19. Shigemi Kagawa & Yuriko Goto & Sangwon Suh & Keisuke Nansai & Yuki Kudoh, 2012. "Accounting for Changes in Automobile Gasoline Consumption in Japan: 2000–2007," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 1(1), pages 1-27, December.
    20. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2640-2651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.