IDEAS home Printed from
   My bibliography  Save this article

Government control or low carbon lifestyle? – Analysis and application of a novel selective-constrained energy-saving and emission-reduction dynamic evolution system


  • Fang, Guochang
  • Tian, Lixin
  • Fu, Min
  • Sun, Mei


This paper explores a novel selective-constrained energy-saving and emission-reduction (ESER) dynamic evolution system, analyzing the impact of cost of conserved energy (CCE), government control, low carbon lifestyle and investment in new technology of ESER on energy intensity and economic growth. Based on artificial neural network, the quantitative coefficients of the actual system are identified. Taking the real situation in China for instance, an empirical study is undertaken by adjusting the parameters of the actual system. The dynamic evolution behavior of energy intensity and economic growth in reality are observed, with the results in perfect agreement with actual situation. The research shows that the introduction of CCE into ESER system will have certain restrictive effect on energy intensity in the earlier period. However, with the further development of the actual system, carbon emissions could be better controlled and energy intensity would decline. In the long run, the impacts of CCE on economic growth are positive. Government control and low carbon lifestyle play a decisive role in controlling ESER system and declining energy intensity. But the influence of government control on economic growth should be considered at the same time and the controlling effect of low carbon lifestyle on energy intensity should be strengthened gradually, while the investment in new technology of ESER can be neglected. Two different cases of ESER are proposed after a comprehensive analysis. The relations between variables and constraint conditions in the ESER system are harmonized remarkably. A better solution to carry out ESER is put forward at last, with numerical simulations being carried out to demonstrate the results.

Suggested Citation

  • Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei, 2014. "Government control or low carbon lifestyle? – Analysis and application of a novel selective-constrained energy-saving and emission-reduction dynamic evolution system," Energy Policy, Elsevier, vol. 68(C), pages 498-507.
  • Handle: RePEc:eee:enepol:v:68:y:2014:i:c:p:498-507 DOI: 10.1016/j.enpol.2014.01.013

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Sun, Mei & Wang, Xiaofang & Chen, Ying & Tian, Lixin, 2011. "Energy resources demand-supply system analysis and empirical research based on non-linear approach," Energy, Elsevier, vol. 36(9), pages 5460-5465.
    2. Streimikiene, Dalia & Volochovic, Andzej, 2011. "The impact of household behavioral changes on GHG emission reduction in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4118-4124.
    3. Jammazi, Rania & Aloui, Chaker, 2012. "Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling," Energy Economics, Elsevier, vol. 34(3), pages 828-841.
    4. Aghion, Philippe & David, Paul A. & Foray, Dominique, 2009. "Science, technology and innovation for economic growth: Linking policy research and practice in 'STIG Systems'," Research Policy, Elsevier, pages 681-693.
    5. Fourcroy, Charlotte & Gallouj, Faiz & Decellas, Fabrice, 2012. "Energy consumption in service industries: Challenging the myth of non-materiality," Ecological Economics, Elsevier, pages 155-164.
    6. Garg, Amit & Maheshwari, Jyoti & Mahapatra, Diptiranjan & Kumar, Satish, 2011. "Economic and environmental implications of demand-side management options," Energy Policy, Elsevier, vol. 39(6), pages 3076-3085, June.
    7. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei, 2013. "The impacts of carbon tax on energy intensity and economic growth – A dynamic evolution analysis on the case of China," Applied Energy, Elsevier, pages 17-28.
    8. Fang, Guochang & Tian, Lixin & Sun, Mei & Fu, Min, 2012. "Analysis and application of a novel three-dimensional energy-saving and emission-reduction dynamic evolution system," Energy, Elsevier, vol. 40(1), pages 291-299.
    9. Murat, Yetis Sazi & Ceylan, Halim, 2006. "Use of artificial neural networks for transport energy demand modeling," Energy Policy, Elsevier, vol. 34(17), pages 3165-3172, November.
    10. Liu, Li-qun & Liu, Chun-xia & Sun, Zhi-yi, 2011. "A survey of China's low-carbon application practice--Opportunity goes with challenge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2895-2903, August.
    11. Foxon, Timothy J., 2011. "A coevolutionary framework for analysing a transition to a sustainable low carbon economy," Ecological Economics, Elsevier, vol. 70(12), pages 2258-2267.
    12. Heiskanen, Eva & Johnson, Mikael & Robinson, Simon & Vadovics, Edina & Saastamoinen, Mika, 2010. "Low-carbon communities as a context for individual behavioural change," Energy Policy, Elsevier, vol. 38(12), pages 7586-7595, December.
    13. Wang, Qiang & Chen, Yong, 2010. "Energy saving and emission reduction revolutionizing China's environmental protection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 535-539, January.
    14. Rezessy, Silvia & Bertoldi, Paolo, 2011. "Voluntary agreements in the field of energy efficiency and emission reduction: Review and analysis of experiences in the European Union," Energy Policy, Elsevier, vol. 39(11), pages 7121-7129.
    15. Zhang, Jianjun & Fu, Meichen & Geng, Yuhuan & Tao, Jin, 2011. "Energy saving and emission reduction: A project of coal-resource integration in Shanxi Province, China," Energy Policy, Elsevier, vol. 39(6), pages 3029-3032, June.
    16. Abdelaziz, E.A. & Saidur, R. & Mekhilef, S., 2011. "A review on energy saving strategies in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 150-168, January.
    17. Hamit-Haggar, Mahamat, 2012. "Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective," Energy Economics, Elsevier, vol. 34(1), pages 358-364.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei & Du, Ruijin & Liu, Menghe, 2017. "Investigating carbon tax pilot in YRD urban agglomerations—Analysis of a novel ESER system with carbon tax constraints and its application," Applied Energy, Elsevier, pages 635-647.
    2. repec:spr:endesu:v:19:y:2017:i:5:d:10.1007_s10668-016-9834-3 is not listed on IDEAS
    3. repec:eee:appene:v:196:y:2017:i:c:p:180-189 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:68:y:2014:i:c:p:498-507. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.