IDEAS home Printed from
   My bibliography  Save this article

A conceptual framework for future-proofing the energy performance of buildings


  • Georgiadou, Maria Christina
  • Hacking, Theophilus
  • Guthrie, Peter


This paper presents a review undertaken to understand the concept of ‘future-proofing’ the energy performance of buildings. The long lifecycles of the building stock, the impacts of climate change and the requirements for low carbon development underline the need for long-term thinking from the early design stages. ‘Future-proofing’ is an emerging research agenda with currently no widely accepted definition amongst scholars and building professionals. In this paper, it refers to design processes that accommodate explicitly full lifecycle perspectives and energy trends and drivers by at least 2050, when selecting energy efficient measures and low carbon technologies. A knowledge map is introduced, which explores the key axes (or attributes) for achieving a ‘future-proofed’ energy design; namely, coverage of sustainability issues, lifecycle thinking, and accommodating risks and uncertainties that affect the energy consumption. It is concluded that further research is needed so that established building energy assessment methods are refined to better incorporate future-proofing. The study follows an interdisciplinary approach and is targeted at design teams with aspirations to achieve resilient and flexible low-energy buildings over the long-term.

Suggested Citation

  • Georgiadou, Maria Christina & Hacking, Theophilus & Guthrie, Peter, 2012. "A conceptual framework for future-proofing the energy performance of buildings," Energy Policy, Elsevier, vol. 47(C), pages 145-155.
  • Handle: RePEc:eee:enepol:v:47:y:2012:i:c:p:145-155
    DOI: 10.1016/j.enpol.2012.04.039

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808, Decembrie.
    2. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    3. Kowalski, Katharina & Stagl, Sigrid & Madlener, Reinhard & Omann, Ines, 2009. "Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1063-1074, September.
    4. Jollands, Nigel & Waide, Paul & Ellis, Mark & Onoda, Takao & Laustsen, Jens & Tanaka, Kanako & de T'Serclaes, Philippine & Barnsley, Ingrid & Bradley, Rick & Meier, Alan, 2010. "The 25 IEA energy efficiency policy recommendations to the G8 Gleneagles Plan of Action," Energy Policy, Elsevier, vol. 38(11), pages 6409-6418, November.
    5. Yohanis, Y.G. & Norton, B., 2002. "Life-cycle operational and embodied energy for a generic single-storey office building in the UK," Energy, Elsevier, vol. 27(1), pages 77-92.
    6. Malmqvist, Tove & Glaumann, Mauritz & Scarpellini, Sabina & Zabalza, Ignacio & Aranda, Alfonso & Llera, Eva & Díaz, Sergio, 2011. "Life cycle assessment in buildings: The ENSLIC simplified method and guidelines," Energy, Elsevier, vol. 36(4), pages 1900-1907.
    7. Bunn, Derek W. & Salo, Ahti A., 1993. "Forecasting with scenarios," European Journal of Operational Research, Elsevier, vol. 68(3), pages 291-303, August.
    8. Ness, Barry & Urbel-Piirsalu, Evelin & Anderberg, Stefan & Olsson, Lennart, 2007. "Categorising tools for sustainability assessment," Ecological Economics, Elsevier, vol. 60(3), pages 498-508, January.
    9. Nessa Winston, 2010. "Regeneration for sustainable communities? Barriers to implementing sustainable housing in urban areas," Sustainable Development, John Wiley & Sons, Ltd., vol. 18(6), pages 319-330, November/.
    10. Sharma, Aashish & Saxena, Abhishek & Sethi, Muneesh & Shree, Venu & Varun, 2011. "Life cycle assessment of buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 871-875, January.
    11. Pitts, Adrian, 2008. "Future proof construction--Future building and systems design for energy and fuel flexibility," Energy Policy, Elsevier, vol. 36(12), pages 4539-4543, December.
    12. Lior, Noam, 2010. "Sustainable energy development: The present (2009) situation and possible paths to the future," Energy, Elsevier, vol. 35(10), pages 3976-3994.
    13. Chwieduk, Dorota, 2003. "Towards sustainable-energy buildings," Applied Energy, Elsevier, vol. 76(1-3), pages 211-217, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Raatikainen, Mika & Skön, Jukka-Pekka & Leiviskä, Kauko & Kolehmainen, Mikko, 2016. "Intelligent analysis of energy consumption in school buildings," Applied Energy, Elsevier, vol. 165(C), pages 416-429.
    2. Licia Felicioni & Antonín Lupíšek & Jacopo Gaspari, 2023. "Exploring the Common Ground of Sustainability and Resilience in the Building Sector: A Systematic Literature Review and Analysis of Building Rating Systems," Sustainability, MDPI, vol. 15(1), pages 1-24, January.
    3. Du, Qiang & Wang, Yalei & Pang, Qiaoyu & Hao, Tingting & Zhou, Yuqing, 2023. "The dynamic analysis on low-carbon building adoption under emission trading scheme," Energy, Elsevier, vol. 263(PC).
    4. Seungjun Roh & Sungho Tae & Rakhyun Kim, 2018. "Development of a Streamlined Environmental Life Cycle Costing Model for Buildings in South Korea," Sustainability, MDPI, vol. 10(6), pages 1-15, May.
    5. Singh, Manoj Kumar & Mahapatra, Sadhan & Teller, Jacques, 2013. "An analysis on energy efficiency initiatives in the building stock of Liege, Belgium," Energy Policy, Elsevier, vol. 62(C), pages 729-741.
    6. Jernej Markelj & Manja Kitek Kuzman & Petra Grošelj & Martina Zbašnik-Senegačnik, 2014. "A Simplified Method for Evaluating Building Sustainability in the Early Design Phase for Architects," Sustainability, MDPI, vol. 6(12), pages 1-21, December.
    7. Sara Meerow & Joshua P. Newell, 2015. "Resilience and Complexity: A Bibliometric Review and Prospects for Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 19(2), pages 236-251, April.
    8. Annunziata, Eleonora & Rizzi, Francesco & Frey, Marco, 2014. "Enhancing energy efficiency in public buildings: The role of local energy audit programmes," Energy Policy, Elsevier, vol. 69(C), pages 364-373.
    9. Singh, Manoj Kumar & Attia, Shady & Mahapatra, Sadhan & Teller, Jacques, 2016. "Assessment of thermal comfort in existing pre-1945 residential building stock," Energy, Elsevier, vol. 98(C), pages 122-134.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Optimization design of BCHP system to maximize to save energy and reduce environmental impact," Energy, Elsevier, vol. 35(8), pages 3388-3398.
    2. Szántó, Richárd, 2012. "Több szempontú részvételi döntések a fenntarthatósági értékelésekben. A legnépszerűbb módszerek összehasonlítása [Participatory multi-criteria decision analysis. A comparison of methodologies]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(12), pages 1336-1355.
    3. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    4. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    5. Diana Tuomasjukka & Staffan Berg & Marcus Lindner, 2013. "Managing Sustainability of Fennoscandian Forests and Their Use by Law and/or Agreement: For Whom and Which Purpose?," Sustainability, MDPI, vol. 6(1), pages 1-32, December.
    6. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    7. Schilling, Markus & Chiang, Lichun, 2011. "The effect of natural resources on a sustainable development policy: The approach of non-sustainable externalities," Energy Policy, Elsevier, vol. 39(2), pages 990-998, February.
    8. McKenna, R. & Bertsch, V. & Mainzer, K. & Fichtner, W., 2018. "Combining local preferences with multi-criteria decision analysis and linear optimization to develop feasible energy concepts in small communities," European Journal of Operational Research, Elsevier, vol. 268(3), pages 1092-1110.
    9. Peura, Pekka, 2013. "From Malthus to sustainable energy—Theoretical orientations to reforming the energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 309-327.
    10. Magdalena Tutak & Jarosław Brodny & Peter Bindzár, 2021. "Assessing the Level of Energy and Climate Sustainability in the European Union Countries in the Context of the European Green Deal Strategy and Agenda 2030," Energies, MDPI, vol. 14(6), pages 1-32, March.
    11. Lin, Sheng-Hau & Huang, Xianjin & Fu, Guole & Chen, Jia-Tsong & Zhao, Xiaofeng & Li, Jia-Hsuan & Tzeng, Gwo-Hshiung, 2021. "Evaluating the sustainability of urban renewal projects based on a model of hybrid multiple-attribute decision-making," Land Use Policy, Elsevier, vol. 108(C).
    12. Carlo Carraro & Lorenza Campagnolo & Fabio Eboli & Elisa Lanzi & Ramiro Parrado & Elisa Portale, 2012. "Quantifying Sustainability: A New Approach and World Ranking," Working Papers 2012.94, Fondazione Eni Enrico Mattei.
    13. Mikelis Grivins & Talis Tisenkopfs & Zaklina Stojanovic & Bojan Ristic, 2016. "A Comparative Analysis of the Social Performance of Global and Local Berry Supply Chains," Sustainability, MDPI, vol. 8(6), pages 1-20, June.
    14. Jyoti Dhingra Darbari & Devika Kannan & Vernika Agarwal & P. C. Jha, 2019. "Fuzzy criteria programming approach for optimising the TBL performance of closed loop supply chain network design problem," Annals of Operations Research, Springer, vol. 273(1), pages 693-738, February.
    15. Charikleia Karakosta, 2016. "A Holistic Approach for Addressing the Issue of Effective Technology Transfer in the Frame of Climate Change," Energies, MDPI, vol. 9(7), pages 1-20, June.
    16. Valentin Bertsch & Wolf Fichtner, 2016. "A participatory multi-criteria approach for power generation and transmission planning," Annals of Operations Research, Springer, vol. 245(1), pages 177-207, October.
    17. Thomassen, M.A. & Dolman, M.A. & van Calker, K.J. & de Boer, I.J.M., 2009. "Relating life cycle assessment indicators to gross value added for Dutch dairy farms," Ecological Economics, Elsevier, vol. 68(8-9), pages 2278-2284, June.
    18. Shen, Yung-Chi & Chou, Chiyang James & Lin, Grace T.R., 2011. "The portfolio of renewable energy sources for achieving the three E policy goals," Energy, Elsevier, vol. 36(5), pages 2589-2598.
    19. Lhermie, Guillaume & Wernli, Didier & Jørgensen, Peter Søgaard & Kenkel, Donald & Lin Lawell, C.-Y. Cynthia & Tauer, Loren William & Gröhn, Yrjo Tapio, 2019. "Tradeoffs between resistance to antimicrobials in public health and their use in agriculture: Moving towards sustainability assessment," Ecological Economics, Elsevier, vol. 166(C), pages 1-1.
    20. Wulf, David & Bertsch, Valentin, 2016. "A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making," MPRA Paper 75025, University Library of Munich, Germany.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:47:y:2012:i:c:p:145-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.