IDEAS home Printed from
   My bibliography  Save this article

The forecast of motor vehicle, energy demand and CO2 emission from Taiwan's road transportation sector


  • Lu, I.J.
  • Lewis, Charles
  • Lin, Sue J.


The grey forecasting model, GM(1,1) was adopted in this study to capture the development trends of the number of motor vehicles, vehicular energy consumption and CO2 emissions in Taiwan during 2007-2025. In addition, the simulation of different economic development scenarios were explored by modifying the value of the development coefficient, a, in the grey forecasting model to reflect the influence of economic growth and to be a helpful reference for realizing traffic CO2 reduction potential and setting CO2 mitigation strategies for Taiwan. Results showed that the vehicle fleet, energy demand and CO2 emitted by the road transportation system continued to rise at the annual growth rates of 3.64%, 3.25% and 3.23% over the next 18 years. Besides, the simulation of different economic development scenarios revealed that the lower and upper bound values of allowable vehicles in 2025 are 30.2 and 36.3 million vehicles, respectively, with the traffic fuel consumption lies between 25.8 million kiloliters to 31.0 million kiloliters. The corresponding emission of CO2 will be between 61.1 and 73.4 million metric tons in the low- and high-scenario profiles.

Suggested Citation

  • Lu, I.J. & Lewis, Charles & Lin, Sue J., 2009. "The forecast of motor vehicle, energy demand and CO2 emission from Taiwan's road transportation sector," Energy Policy, Elsevier, vol. 37(8), pages 2952-2961, August.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:8:p:2952-2961

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Adams, F. Gerard & Shachmurove, Yochanan, 2008. "Modeling and forecasting energy consumption in China: Implications for Chinese energy demand and imports in 2020," Energy Economics, Elsevier, vol. 30(3), pages 1263-1278, May.
    2. Dargay, Joyce & Gately, Dermot, 1997. "Vehicle ownership to 2015: Implications for energy use and emissions," Energy Policy, Elsevier, vol. 25(14-15), pages 1121-1127, December.
    3. Ramanathan, R., 2001. "The long-run behaviour of transport performance in India: a cointegration approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(4), pages 309-320, May.
    4. Wang, Rong-Tsu & Ho, Chien-Ta & Feng, Cheng-Min & Yang, Yung-Kai, 2004. "A comparative analysis of the operational performance of Taiwan's major airports," Journal of Air Transport Management, Elsevier, vol. 10(5), pages 353-360.
    5. Haldenbilen, Soner & Ceylan, Halim, 2005. "Genetic algorithm approach to estimate transport energy demand in Turkey," Energy Policy, Elsevier, vol. 33(1), pages 89-98, January.
    6. Akay, Diyar & Atak, Mehmet, 2007. "Grey prediction with rolling mechanism for electricity demand forecasting of Turkey," Energy, Elsevier, vol. 32(9), pages 1670-1675.
    7. Haldenbilen, Soner, 2006. "Fuel price determination in transportation sector using predicted energy and transport demand," Energy Policy, Elsevier, vol. 34(17), pages 3078-3086, November.
    8. Litman, Todd, 2005. "Efficient vehicles versus efficient transportation. Comparing transportation energy conservation strategies," Transport Policy, Elsevier, vol. 12(2), pages 121-129, March.
    9. Samimi, Rodney, 1995. "Road transport energy demand in Australia: A cointegration approach," Energy Economics, Elsevier, vol. 17(4), pages 329-339, October.
    10. Dreher, M & Wietschel, M & Göbelt, M & Rentz, O, 1999. "Energy price elasticities of energy-service demand for passenger traffic in the Federal Republic of Germany," Energy, Elsevier, vol. 24(2), pages 133-140.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:enepol:v:106:y:2017:i:c:p:298-309 is not listed on IDEAS
    2. Zhang, Qingyu & Tian, Weili & Zheng, Yingyue & Zhang, Lili, 2010. "Fuel consumption from vehicles of China until 2030 in energy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 6860-6867, November.
    3. Jiefang Dong & Chun Deng & Rongrong Li & Jieyu Huang, 2016. "Moving Low-Carbon Transportation in Xinjiang: Evidence from STIRPAT and Rigid Regression Models," Sustainability, MDPI, Open Access Journal, vol. 9(1), pages 1-15, December.
    4. Sadri, A. & Ardehali, M.M. & Amirnekooei, K., 2014. "General procedure for long-term energy-environmental planning for transportation sector of developing countries with limited data based on LEAP (long-range energy alternative planning) and EnergyPLAN," Energy, Elsevier, vol. 77(C), pages 831-843.
    5. repec:aen:journl:ej38-5-llorca is not listed on IDEAS
    6. Lu, Shyi-Min, 2016. "A low-carbon transport infrastructure in Taiwan based on the implementation of energy-saving measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 499-509.
    7. Meng, Ming & Niu, Dongxiao & Shang, Wei, 2014. "A small-sample hybrid model for forecasting energy-related CO2 emissions," Energy, Elsevier, vol. 64(C), pages 673-677.
    8. Ben Abdallah, Khaled & Belloumi, Mounir & De Wolf, Daniel, 2013. "Indicators for sustainable energy development: A multivariate cointegration and causality analysis from Tunisian road transport sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 34-43.
    9. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    10. Llorca, Manuel & Baños, José & Somoza, José & Arbués, Pelayo, 2014. "A latent class approach for estimating energy demands and efficiency in transport: An application to Latin America and the Caribbean," Efficiency Series Papers 2014/04, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    11. Sonmez, Mustafa & Akgüngör, Ali Payıdar & Bektaş, Salih, 2017. "Estimating transportation energy demand in Turkey using the artificial bee colony algorithm," Energy, Elsevier, vol. 122(C), pages 301-310.
    12. Hanafizadeh, Payam & Navardi, Zeinab & Bamdad Soofi, Jahanyar, 2010. "An attitude study on the environmental effects of rationing petrol in Tehran," Energy Policy, Elsevier, vol. 38(11), pages 6830-6848, November.
    13. repec:eee:rensus:v:88:y:2018:i:c:p:297-325 is not listed on IDEAS
    14. Keshavarzian, Maryam & Kamali Anaraki, Sara & Zamani, Mehrzad & Erfanifard, Ali, 2012. "Projections of oil demand in road transportation sector on the basis of vehicle ownership projections, worldwide: 1972–2020," Economic Modelling, Elsevier, vol. 29(5), pages 1979-1985.
    15. Limanond, Thirayoot & Jomnonkwao, Sajjakaj & Srikaew, Artit, 2011. "Projection of future transport energy demand of Thailand," Energy Policy, Elsevier, vol. 39(5), pages 2754-2763, May.
    16. Wu, Lifeng & Liu, Sifeng & Liu, Dinglin & Fang, Zhigeng & Xu, Haiyan, 2015. "Modelling and forecasting CO2 emissions in the BRICS (Brazil, Russia, India, China, and South Africa) countries using a novel multi-variable grey model," Energy, Elsevier, vol. 79(C), pages 489-495.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:8:p:2952-2961. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.