IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v201y2025ics0301421525000825.html
   My bibliography  Save this article

Multi-dimensional deconstruction and theme evolution of China's energy policy

Author

Listed:
  • Zang, Xiuzhu
  • Lv, Tao
  • Hou, Xiaoran
  • Deng, Xu
  • Peng, Xiao
  • Li, Na

Abstract

Energy policies are vital tools used by countries to regulate economic and social development as well as guarantee national security. To address the problems of fragmented policy objectives, conflicting tools, and overlapping initiatives, the internal logic and evolutionary trends of energy policies must be explored using the policy content. This study uses 38,277 energy policies as a database and summarizes the four energy policy objectives: clean, low-carbon, safe, and efficient. Using the TextCNN model to classify and deconstruct policies, the LDA + Word2vec theme conceptualization and similarity calculations were compared with the EISMD evolution framework to determine the energy policy theme evolution path. Results indicate that the density of energy policies has increased. Policies have become more comprehensive, barriers between objectives have gradually been broken, and low-carbon objectives have been strengthened. The evolution types are more diversified, evolution paths are more complicated, and the evolution types are often related to technology, industry, and market maturity. Traditional energy themes evolve through inheritance and merger; emerging technology and industry themes evolve through innovation, inheritance, and splitting. Moreover, this study provides a replicable analytical framework for the study of policy evolution in other sectors and evidence for optimizing energy policy design.

Suggested Citation

  • Zang, Xiuzhu & Lv, Tao & Hou, Xiaoran & Deng, Xu & Peng, Xiao & Li, Na, 2025. "Multi-dimensional deconstruction and theme evolution of China's energy policy," Energy Policy, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:enepol:v:201:y:2025:i:c:s0301421525000825
    DOI: 10.1016/j.enpol.2025.114575
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421525000825
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2025.114575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Jiaqian & Chen, Yu & Yu, Lean & Li, Guohao & Li, Jingjing, 2023. "Has the evolution of renewable energy policies facilitated the construction of a new power system for China? A system dynamics analysis," Energy Policy, Elsevier, vol. 183(C).
    2. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    3. Zou, Tong & Guo, Pibin & Li, Fanrong & Wu, Qinglong, 2024. "Research topic identification and trend prediction of China's energy policy: A combined LDA-ARIMA approach," Renewable Energy, Elsevier, vol. 220(C).
    4. Weiss, Olga & Pareschi, Giacomo & Georges, Gil & Boulouchos, Konstantinos, 2021. "The Swiss energy transition: Policies to address the Energy Trilemma," Energy Policy, Elsevier, vol. 148(PA).
    5. J. van den Bergh & J. Castro & S. Drews & F. Exadaktylos & J. Foramitti & F. Klein & T. Konc & I. Savin, 2021. "Designing an effective climate-policy mix: accounting for instrument synergy," Climate Policy, Taylor & Francis Journals, vol. 21(6), pages 745-764, July.
    6. Liu, Dandan & Wang, Delu, 2022. "Evaluation of the synergy degree of industrial de-capacity policies based on text mining: A case study of China's coal industry," Resources Policy, Elsevier, vol. 76(C).
    7. Barnea, Gil & Hagemann, Christian & Wurster, Stefan, 2022. "Policy instruments matter: Support schemes for renewable energy capacity in worldwide comparison," Energy Policy, Elsevier, vol. 168(C).
    8. Kwon, Tae-hyeong, 2018. "Policy synergy or conflict for renewable energy support: Case of RPS and auction in South Korea," Energy Policy, Elsevier, vol. 123(C), pages 443-449.
    9. Rentier, Gerrit & Lelieveldt, Herman & Kramer, Gert Jan, 2023. "Institutional constellations and policy instruments for offshore wind power around the North sea," Energy Policy, Elsevier, vol. 173(C).
    10. Amin, Sakib Bin & Chang, Youngho & Khan, Farhan & Taghizadeh-Hesary, Farhad, 2022. "Energy security and sustainable energy policy in Bangladesh: From the lens of 4As framework," Energy Policy, Elsevier, vol. 161(C).
    11. Jiao, Wenting & Zhang, Xiaosen & Li, Changhong & Guo, Jiaqi, 2021. "Sustainable transition of mining cities in China: Literature review and policy analysis," Resources Policy, Elsevier, vol. 74(C).
    12. Dong, Feng & Liu, Yajie, 2020. "Policy evolution and effect evaluation of new-energy vehicle industry in China," Resources Policy, Elsevier, vol. 67(C).
    13. Li, Lili & Taeihagh, Araz, 2020. "An in-depth analysis of the evolution of the policy mix for the sustainable energy transition in China from 1981 to 2020," Applied Energy, Elsevier, vol. 263(C).
    14. Hedeler, Barbara & Hellsmark, Hans & Söderholm, Patrik, 2023. "Policy mixes and policy feedback: Implications for green industrial growth in the Swedish biofuels industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    15. Werner, Deborah & Lazaro, Lira Luz Benites, 2023. "The policy dimension of energy transition: The Brazilian case in promoting renewable energies (2000–2022)," Energy Policy, Elsevier, vol. 175(C).
    16. Wu, Shu & Han, Hongyun, 2022. "Energy transition, intensity growth, and policy evolution: Evidence from rural China," Energy Economics, Elsevier, vol. 105(C).
    17. Gyeltshen, Sonam, 2022. "Analysis of Bhutan's energy policies in relation to energy security and climate change: Policy perspective," Energy Policy, Elsevier, vol. 170(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Xing & Yu, Shiwei & Fang, Xu & Ovaere, Marten, 2023. "Which combinations of renewable energy policies work better? Insights from policy text synergies in China," Energy Economics, Elsevier, vol. 127(PA).
    2. Bongsuk Sung & Hong Chen & Sang Do Park, 2024. "Who Drives Policy Discourse of China’s Energy Transition: Considering Time Series Perspective, Network and Core-Peripheral Analysis," SAGE Open, , vol. 14(2), pages 21582440241, May.
    3. Nuno Silva & José Alberto Fuinhas & Matheus Koengkan & Emad Kazemzadeh & Volkan Kaymaz, 2024. "Renewable energy deployment in Europe: Do politics matter?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 28751-28784, November.
    4. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    5. Baudino, Marco, 2024. "Oil rents, renewable energy and the role of financial development: Evidence from OPEC+ members," Resources Policy, Elsevier, vol. 99(C).
    6. Pan, Yuling & Dong, Feng, 2022. "Dynamic evolution and driving factors of new energy development: Fresh evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    7. Nieddu, Marcello & Raberto, Marco & Ponta, Linda & Teglio, Andrea & Cincotti, Silvano, 2024. "Evaluating policy mix strategies for the energy transition using an agent-based macroeconomic model," Energy Policy, Elsevier, vol. 193(C).
    8. Zhang, Xiaoman & Cheng, Xu & Qi, Xia & Yang, Kun & Zhao, Zhenyu, 2024. "Evaluation of China's double-carbon energy policy based on the policy modeling consistency index," Utilities Policy, Elsevier, vol. 90(C).
    9. Yang, Jinghua & Xiong, Ming & Li, Xingying, 2025. "Energy transition policy and rural revitalization of Chinese ethnic regions," Finance Research Letters, Elsevier, vol. 71(C).
    10. Ba, Zhichao & Ma, Yaxue & Cai, Jinyao & Li, Gang, 2023. "A citation-based research framework for exploring policy diffusion: Evidence from China's new energy policies," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    11. Chong, Zhaotian & Wang, Qunwei & Wang, Lei, 2023. "Is the photovoltaic power generation policy effective in China? A quantitative analysis of policy synergy based on text mining," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    12. Tello, Witson Peña, 2025. "Policy interactions and electricity generation sector CO2 emissions: A quasi-experimental analysis," Energy Policy, Elsevier, vol. 198(C).
    13. Zha, Donglan & Jiang, Pansong & Zhang, Chaoqun & Xia, Dan & Cao, Yang, 2023. "Positive synergy or negative synergy: An assessment of the carbon emission reduction effect of renewable energy policy mixes on China's power sector," Energy Policy, Elsevier, vol. 183(C).
    14. Zhao, Xiaochun & Jiang, Mei & Wu, Zijun & Zhou, Ying, 2023. "Quantitative evaluation of China's energy security policy under the background of intensifying geopolitical conflicts: Based on PMC model," Resources Policy, Elsevier, vol. 85(PA).
    15. Kumar, Sourabh, 2023. "Evaluation and analysis of India's energy security: A policy perspective," Energy, Elsevier, vol. 278(PB).
    16. Xiong, Zhiqiao & Hu, Jin & Li, Wenfeng, 2024. "From policy to practice: Enhancing enterprise productivity through energy transition initiatives," Energy, Elsevier, vol. 311(C).
    17. Badr Eddine Lebrouhi & Éric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Post-Print hal-03716839, HAL.
    18. Kong, Deyang & Xia, Quhong & Xue, Yixi & Zhao, Xin, 2020. "Effects of multi policies on electric vehicle diffusion under subsidy policy abolishment in China: A multi-actor perspective," Applied Energy, Elsevier, vol. 266(C).
    19. Mac Clay, Pablo & Börner, Jan & Sellare, Jorge, 2023. "Institutional and macroeconomic stability mediate the effect of auctions on renewable energy capacity," Energy Policy, Elsevier, vol. 180(C).
    20. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:201:y:2025:i:c:s0301421525000825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.