IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v163y2022ics0301421522000179.html
   My bibliography  Save this article

Identification of everyday food-related activities with potential for direct and indirect energy savings: KTH Live–in–Lab explorative case study

Author

Listed:
  • Malakhatka, Elena
  • Lundqvist, Per
  • Shafqat, Omar
  • De Bellefon, Angélique

Abstract

This exploratory study analyses the daily activities of the end-user in terms of assessing the potential for conserving direct and indirect energy. In the course of the study, a socio-technological system approach was applied, which made it possible to combine the methods of analysis and interaction of the social group (students) and technical infrastructure (living laboratory). The method of creating personas was also applied to segregate a large group of the population within one segment. This approach allowed us to consider in more detail the different types of behavior in the same segment. As a result, we got more personalized strategies for changing a behavior tailored for each individual persona. In conclusion, a recommendation was given on which policies implications and to which organizations to address.

Suggested Citation

  • Malakhatka, Elena & Lundqvist, Per & Shafqat, Omar & De Bellefon, Angélique, 2022. "Identification of everyday food-related activities with potential for direct and indirect energy savings: KTH Live–in–Lab explorative case study," Energy Policy, Elsevier, vol. 163(C).
  • Handle: RePEc:eee:enepol:v:163:y:2022:i:c:s0301421522000179
    DOI: 10.1016/j.enpol.2022.112792
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522000179
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.112792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katherine Calvin & Marshall Wise & Page Kyle & Pralit Patel & Leon Clarke & Jae Edmonds, 2014. "Trade-offs of different land and bioenergy policies on the path to achieving climate targets," Climatic Change, Springer, vol. 123(3), pages 691-704, April.
    2. Soyoung Yoo & Jiyong Eom & Ingoo Han, 2020. "Factors Driving Consumer Involvement in Energy Consumption and Energy-Efficient Purchasing Behavior: Evidence from Korean Residential Buildings," Sustainability, MDPI, vol. 12(14), pages 1-23, July.
    3. David Tilman & Michael Clark, 2014. "Global diets link environmental sustainability and human health," Nature, Nature, vol. 515(7528), pages 518-522, November.
    4. Garnett, Tara, 2011. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?," Food Policy, Elsevier, vol. 36(S1), pages 23-32.
    5. Pretty, J.N. & Ball, A.S. & Lang, T. & Morison, J.I.L., 2005. "Farm costs and food miles: An assessment of the full cost of the UK weekly food basket," Food Policy, Elsevier, vol. 30(1), pages 1-19, February.
    6. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    7. Grzegorz Baran & Aleksandra Berkowicz, 2020. "Sustainability Living Labs as a Methodological Approach to Research on the Cultural Drivers of Sustainable Development," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    8. Geels, Frank W., 2010. "Ontologies, socio-technical transitions (to sustainability), and the multi-level perspective," Research Policy, Elsevier, vol. 39(4), pages 495-510, May.
    9. Garnett, Tara, 2011. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?," Food Policy, Elsevier, vol. 36(Supplemen), pages 23-32, January.
    10. Tim Kurz & Benjamin Gardner & Bas Verplanken & Charles Abraham, 2015. "Habitual behaviors or patterns of practice? Explaining and changing repetitive climate‐relevant actions," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 6(1), pages 113-128, January.
    11. González, Alejandro D. & Frostell, Björn & Carlsson-Kanyama, Annika, 2011. "Protein efficiency per unit energy and per unit greenhouse gas emissions: Potential contribution of diet choices to climate change mitigation," Food Policy, Elsevier, vol. 36(5), pages 562-570, October.
    12. Pina, André & Silva, Carlos & Ferrão, Paulo, 2012. "The impact of demand side management strategies in the penetration of renewable electricity," Energy, Elsevier, vol. 41(1), pages 128-137.
    13. Michael Martin & Miguel Brandão, 2017. "Evaluating the Environmental Consequences of Swedish Food Consumption and Dietary Choices," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    14. Hager, Tiffany J. & Morawicki, Ruben, 2013. "Energy consumption during cooking in the residential sector of developed nations: A review," Food Policy, Elsevier, vol. 40(C), pages 54-63.
    15. William J. Ripple & Pete Smith & Helmut Haberl & Stephen A. Montzka & Clive McAlpine & Douglas H. Boucher, 2014. "Ruminants, climate change and climate policy," Nature Climate Change, Nature, vol. 4(1), pages 2-5, January.
    16. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    17. Stephen Toler & Brian C. Briggeman & Jayson L. Lusk & Damian C. Adams, 2009. "Fairness, Farmers Markets, and Local Production," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(5), pages 1272-1278.
    18. Xianwei Liu & Yang Zou & Jianping Wu, 2018. "Factors Influencing Public-Sphere Pro-Environmental Behavior among Mongolian College Students: A Test of Value–Belief–Norm Theory," Sustainability, MDPI, vol. 10(5), pages 1-19, May.
    19. Hauke Ward & Leonie Wenz & Jan C. Steckel & Jan C. Minx, 2018. "Truncation Error Estimates in Process Life Cycle Assessment Using Input‐Output Analysis," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1080-1091, October.
    20. Arkaitz Usubiaga‐Liaño & Paul Behrens & Vassilis Daioglou, 2020. "Energy use in the global food system," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 830-840, August.
    21. Chaminade, Cristina & Edquist, Charles, 2006. "Rationales for public policy intervention from a systems of innovation approach: the case of VINNOVA," Papers in Innovation Studies 2006/4, Lund University, CIRCLE - Centre for Innovation Research.
    22. Cherry, Todd L. & McEvoy, David M. & Westskog, Hege, 2019. "Cultural worldviews, institutional rules and the willingness to participate in green energy programs," Resource and Energy Economics, Elsevier, vol. 56(C), pages 28-38.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Martin & Miguel Brandão, 2017. "Evaluating the Environmental Consequences of Swedish Food Consumption and Dietary Choices," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    2. Rositsa T. Ilieva & Andreas Hernandez, 2018. "Scaling-Up Sustainable Development Initiatives: A Comparative Case Study of Agri-Food System Innovations in Brazil, New York, and Senegal," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    3. Arkaitz Usubiaga‐Liaño & Paul Behrens & Vassilis Daioglou, 2020. "Energy use in the global food system," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 830-840, August.
    4. Catia Milena Lopes & Annibal José Scavarda & Mauricio Nunes Macedo de Carvalho & André Luis Korzenowski, 2018. "The Business Model and Innovation Analyses: The Sustainable Transition Obstacles and Drivers for the Hospital Supply Chains," Resources, MDPI, vol. 8(1), pages 1-17, December.
    5. Vincent-Paul Sanon & Raymond Ouedraogo & Patrice Toé & Hamid El Bilali & Erwin Lautsch & Stefan Vogel & Andreas H. Melcher, 2021. "Socio-Economic Perspectives of Transition in Inland Fisheries and Fish Farming in a Least Developed Country," Sustainability, MDPI, vol. 13(5), pages 1-34, March.
    6. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Angela Zinnai & Alberto Pardossi, 2018. "A Reflection of the Use of the Life Cycle Assessment Tool for Agri-Food Sustainability," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    7. Lee, Junmin & Kim, Keungoui & Kim, Jiyong & Hwang, Junseok, 2022. "The relationship between shared mobility and regulation in South Korea: A system dynamics approach from the socio-technical transitions perspective," Technovation, Elsevier, vol. 109(C).
    8. Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
    9. Kriechbaum, Michael & Posch, Alfred & Hauswiesner, Angelika, 2021. "Hype cycles during socio-technical transitions: The dynamics of collective expectations about renewable energy in Germany," Research Policy, Elsevier, vol. 50(9).
    10. Jano-Ito, Marco A. & Crawford-Brown, Douglas, 2016. "Socio-technical analysis of the electricity sector of Mexico: Its historical evolution and implications for a transition towards low-carbon development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 567-590.
    11. van Geenhuizen, Marina & Ye, Qing, 2014. "Responsible innovators: open networks on the way to sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 28-40.
    12. Shuai Qin & Hong Chen & Haokun Wang, 2021. "Spatial–Temporal Heterogeneity and Driving Factors of Rural Residents’ Food Consumption Carbon Emissions in China—Based on an ESDA-GWR Model," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    13. Walrave, Bob & Talmar, Madis & Podoynitsyna, Ksenia S. & Romme, A. Georges L. & Verbong, Geert P.J., 2018. "A multi-level perspective on innovation ecosystems for path-breaking innovation," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 103-113.
    14. Weigelt, Carmen & Lu, Shaohua & Verhaal, J. Cameron, 2021. "Blinded by the sun: The role of prosumers as niche actors in incumbent firms’ adoption of solar power during sustainability transitions," Research Policy, Elsevier, vol. 50(9).
    15. Louise Seconda & Julia Baudry & Benjamin Allès & Christine Boizot-Szantai & Louis-Georges Soler & Pilar Galan & Serge Hercberg & Brigitte Langevin & Denis Lairon & Philippe Pointereau & Emmanuelle Kes, 2018. "Comparing nutritional, economic, and environmental performances of diets according to their levels of greenhouse gas emissions," Climatic Change, Springer, vol. 148(1), pages 155-172, May.
    16. Elvira Molin & Michael Martin & Anna Björklund, 2021. "Addressing Sustainability within Public Procurement of Food: A Systematic Literature Review," Sustainability, MDPI, vol. 13(23), pages 1-21, December.
    17. Catia Milena Lopes & Annibal José Scavarda & Guilherme Luís Roehe Vaccaro & Christopher Rosa Pohlmann & André Luis Korzenowski, 2018. "Perspective of Business Models and Innovation for Sustainability Transition in Hospitals," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    18. Kirsi Hyttinen & Sampsa Ruutu & Mika Nieminen & Faiz Gallouj & Marja Toivonen, 2014. "A system dynamic and multi-criteria evaluation of innovations in environmental services," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2014(3), pages 29-52.
    19. Biancamaria Torquati & Lucio Cecchini & Chiara Paffarini & Massimo Chiorri, 2021. "The economic and environmental sustainability of extra virgin olive oil supply chains: An analysis based on food miles and value chains," Economia agro-alimentare, FrancoAngeli Editore, vol. 23(1), pages 1-28.
    20. Svensson, Oscar & Nikoleris, Alexandra, 2018. "Structure reconsidered: Towards new foundations of explanatory transitions theory," Research Policy, Elsevier, vol. 47(2), pages 462-473.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:163:y:2022:i:c:s0301421522000179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.