IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v116y2018icp10-18.html
   My bibliography  Save this article

A multi-model assessment of energy and emissions for India's transportation sector through 2050

Author

Listed:
  • Paladugula, Anantha Lakshmi
  • Kholod, Nazar
  • Chaturvedi, Vaibhav
  • Ghosh, Probal Pratap
  • Pal, Sarbojit
  • Clarke, Leon
  • Evans, Meredydd
  • Kyle, Page
  • Koti, Poonam Nagar
  • Parikh, Kirit
  • Qamar, Sharif
  • Wilson, Sangeetha Ann

Abstract

This paper focuses on comparing the framework and projections of energy consumption and emissions from India's transportation sector up to 2050. To understand the role of road transport in energy demand and emissions, five modeling teams developed baseline projections for India's transportation sector as part of inter-model comparison exercise under the Sustainable Growth Working Group (SGWG) of the US-India Energy Dialog. Based on modeling results, we explore the developments in India's passenger and freight road transport, including changes in the modal shift and the resulting changes in energy consumption, carbon dioxide (CO2) and particulate matter (PM2.5) emissions. We find significant differences in the base-year data and parameters for future projections, namely energy consumption by transport in general and by mode, service demand for passenger and freight transport. Variation in modeling assumptions across modeling teams reflects the difference in opinion among the different modeling teams which in turn reflects the underlying uncertainty with respect to key assumptions. We have identified several important data gaps in our knowledge about the development of the transportation sector in India. The results of this inter-model study can be used by Indian policy makers to set quantified targets in emission reductions from the transportation sector.

Suggested Citation

  • Paladugula, Anantha Lakshmi & Kholod, Nazar & Chaturvedi, Vaibhav & Ghosh, Probal Pratap & Pal, Sarbojit & Clarke, Leon & Evans, Meredydd & Kyle, Page & Koti, Poonam Nagar & Parikh, Kirit & Qamar, Sha, 2018. "A multi-model assessment of energy and emissions for India's transportation sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 10-18.
  • Handle: RePEc:eee:enepol:v:116:y:2018:i:c:p:10-18
    DOI: 10.1016/j.enpol.2018.01.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518300466
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.01.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mishra, Gouri S. & Kyle, Page & Teter, Jacob & Morrison, Geoffrey M. & Kim, Son H. & Yeh, Sonia, 2013. "Transportation Module of Global Change Assessment Model (GCAM): Model Documentation- Version 1.0," Institute of Transportation Studies, Working Paper Series qt8nk2c96d, Institute of Transportation Studies, UC Davis.
    2. Pietzcker, Robert C. & Longden, Thomas & Chen, Wenying & Fu, Sha & Kriegler, Elmar & Kyle, Page & Luderer, Gunnar, 2014. "Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models," Energy, Elsevier, vol. 64(C), pages 95-108.
    3. Parikh, Kirit S. & Parikh, Jyoti K., 2016. "Realizing potential savings of energy and emissions from efficient household appliances in India," Energy Policy, Elsevier, vol. 97(C), pages 102-111.
    4. Kyle, Page & Kim, Son H., 2011. "Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands," Energy Policy, Elsevier, vol. 39(5), pages 3012-3024, May.
    5. Priyadarshi R. Shukla & Vaibhav Chaturvedi, 2013. "Sustainable energy transformations in India under climate policy," Sustainable Development, John Wiley & Sons, Ltd., vol. 21(1), pages 48-59, January.
    6. Yin, Xiang & Chen, Wenying & Eom, Jiyong & Clarke, Leon E. & Kim, Son H. & Patel, Pralit L. & Yu, Sha & Kyle, G. Page, 2015. "China's transportation energy consumption and CO2 emissions from a global perspective," Energy Policy, Elsevier, vol. 82(C), pages 233-248.
    7. Salil Arora & Anant Vyas & Larry R. Johnson, 2011. "Projections of highway vehicle population, energy demand, and CO 2 emissions in India to 2040," Natural Resources Forum, Blackwell Publishing, vol. 35, pages 49-62, February.
    8. Dhar, Subash & Shukla, Priyadarshi R., 2015. "Low carbon scenarios for transport in India: Co-benefits analysis," Energy Policy, Elsevier, vol. 81(C), pages 186-198.
    9. Bastien Girod & Detlef Vuuren & Maria Grahn & Alban Kitous & Son Kim & Page Kyle, 2013. "Climate impact of transportation A model comparison," Climatic Change, Springer, vol. 118(3), pages 595-608, June.
    10. Clarke, Leon & Krey, Volker & Weyant, John & Chaturvedi, Vaibhav, 2012. "Regional energy system variation in global models: Results from the Asian Modeling Exercise scenarios," Energy Economics, Elsevier, vol. 34(S3), pages 293-305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gupta, Dipti & Dhar, Subash, 2022. "Exploring the freight transportation transitions for mitigation and development pathways of India," Transport Policy, Elsevier, vol. 129(C), pages 156-175.
    2. Jha, Amit Prakash & Singh, Sanjay Kumar, 2022. "Future mobility in India from a changing energy mix perspective," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 706-724.
    3. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    4. Deendarlianto, & Widyaparaga, Adhika & Widodo, Tri & Handika, Irine & Chandra Setiawan, Indra & Lindasista, Alia, 2020. "Modelling of Indonesian road transport energy sector in order to fulfill the national energy and oil reduction targets," Renewable Energy, Elsevier, vol. 146(C), pages 504-518.
    5. Kumar, Aalok & Anbanandam, Ramesh, 2022. "Assessment of environmental and social sustainability performance of the freight transportation industry: An index-based approach," Transport Policy, Elsevier, vol. 124(C), pages 43-60.
    6. Wang, Bo & Sun, Yefei & Chen, Qingxiang & Wang, Zhaohua, 2018. "Determinants analysis of carbon dioxide emissions in passenger and freight transportation sectors in China," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 127-132.
    7. Ou, Yang & Kittner, Noah & Babaee, Samaneh & Smith, Steven J. & Nolte, Christopher G. & Loughlin, Daniel H., 2021. "Evaluating long-term emission impacts of large-scale electric vehicle deployment in the US using a human-Earth systems model," Applied Energy, Elsevier, vol. 300(C).
    8. Laha, Priyanka & Chakraborty, Basab, 2021. "Cost optimal combinations of storage technologies for maximizing renewable integration in Indian power system by 2040: Multi-region approach," Renewable Energy, Elsevier, vol. 179(C), pages 233-247.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Xunzhang & Wang, Hailin & Wang, Lining & Chen, Wenying, 2018. "Decarbonization of China's transportation sector: In light of national mitigation toward the Paris Agreement goals," Energy, Elsevier, vol. 155(C), pages 853-864.
    2. Runsen Zhang & Tatsuya Hanaoka, 2022. "Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Bosetti, Valentina & Longden, Thomas, 2013. "Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles," Energy Policy, Elsevier, vol. 58(C), pages 209-219.
    4. Seungho Jeon & Minyoung Roh & Almas Heshmati & Suduk Kim, 2020. "An Assessment of Corporate Average Fuel Economy Standards for Passenger Cars in South Korea," Energies, MDPI, vol. 13(17), pages 1-13, September.
    5. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    6. Zhang, Runsen & Fujimori, Shinichiro & Dai, Hancheng & Hanaoka, Tatsuya, 2018. "Contribution of the transport sector to climate change mitigation: Insights from a global passenger transport model coupled with a computable general equilibrium model," Applied Energy, Elsevier, vol. 211(C), pages 76-88.
    7. Yan, Shiyu & De Bruin, Kelly & Dennehy, Emer & Curtis, John, 2020. "A freight transport demand, energy and emission model with technological choices," Papers WP669, Economic and Social Research Institute (ESRI).
    8. Cai, Yongxia & Woollacott, Jared & Beach, Robert H. & Rafelski, Lauren E. & Ramig, Christopher & Shelby, Michael, 2023. "Insights from adding transportation sector detail into an economy-wide model: The case of the ADAGE CGE model," Energy Economics, Elsevier, vol. 123(C).
    9. Yin, Xiang & Chen, Wenying & Eom, Jiyong & Clarke, Leon E. & Kim, Son H. & Patel, Pralit L. & Yu, Sha & Kyle, G. Page, 2015. "China's transportation energy consumption and CO2 emissions from a global perspective," Energy Policy, Elsevier, vol. 82(C), pages 233-248.
    10. Ou, Yang & Kittner, Noah & Babaee, Samaneh & Smith, Steven J. & Nolte, Christopher G. & Loughlin, Daniel H., 2021. "Evaluating long-term emission impacts of large-scale electric vehicle deployment in the US using a human-Earth systems model," Applied Energy, Elsevier, vol. 300(C).
    11. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    13. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    14. Vaibhav Chaturvedi & Priyadarshi Shukla, 2014. "Role of energy efficiency in climate change mitigation policy for India: assessment of co-benefits and opportunities within an integrated assessment modeling framework," Climatic Change, Springer, vol. 123(3), pages 597-609, April.
    15. Wang, Hailin & Ou, Xunmin & Zhang, Xiliang, 2017. "Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050," Energy Policy, Elsevier, vol. 109(C), pages 719-733.
    16. Shuanghui Bao & Osamu Nishiura & Shinichiro Fujimori & Ken Oshiro & Runsen Zhang, 2020. "Identification of Key Factors to Reduce Transport-Related Air Pollutants and CO 2 Emissions in Asia," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    17. Zhang, Runsen & Zhang, Junyi, 2021. "Long-term pathways to deep decarbonization of the transport sector in the post-COVID world," Transport Policy, Elsevier, vol. 110(C), pages 28-36.
    18. Yan, Shiyu & de Bruin, Kelly & Dennehy, Emer & Curtis, John, 2021. "Climate policies for freight transport: Energy and emission projections through 2050," Transport Policy, Elsevier, vol. 107(C), pages 11-23.
    19. Ajanovic, Amela & Haas, Reinhard, 2017. "The impact of energy policies in scenarios on GHG emission reduction in passenger car mobility in the EU-15," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1088-1096.
    20. Liu, Lei & Wang, Ke & Wang, Shanshan & Zhang, Ruiqin & Tang, Xiaoyan, 2018. "Assessing energy consumption, CO2 and pollutant emissions and health benefits from China's transport sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 382-396.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:116:y:2018:i:c:p:10-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.