IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Generators' bidding behavior in the NYISO day-ahead wholesale electricity market

  • Zhang, Ning
Registered author(s):

    This paper proposes a statistical and econometric model to analyze the generators' bidding behavior in the NYISO day-ahead wholesale electricity market. The generator level bidding data show very strong persistence in generators' grouping choices over time. Using dynamic random effect ordered probit model, we find that persistence is characterized by positive state dependence and unobserved heterogeneity and state dependence is more important than unobserved heterogeneity. The finding of true state dependence suggests a scope for economic policy intervention. If NYISO can implement an effective policy to switch generators from higher price groups to lower price groups, the effect is likely to be lasting. As a result, the market price can be lowered in the long-run. Generators' offered capacity is estimated by a two-stage sample selection model. The estimated results show that generators in higher-priced groups tend to withhold their capacity strategically to push up market prices. It further confirms the importance of an effective policy to turn generators into lower price groups in order to mitigate unexpected price spikes. The simulated market prices based on our estimated aggregate supply curve can replicate most volatility of actual DA market prices. Applying our models to different demand assumptions, we find that demand conditions can affect market prices significantly. It validates the importance of introducing demand side management during the restructure of electricity industry.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Energy Economics.

    Volume (Year): 31 (2009)
    Issue (Month): 6 (November)
    Pages: 897-913

    in new window

    Handle: RePEc:eee:eneeco:v:31:y:2009:i:6:p:897-913
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:31:y:2009:i:6:p:897-913. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.