IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v126y2023ics0140988323004541.html
   My bibliography  Save this article

Unveiling the impact of geopolitical conflict on oil prices: A case study of the Russia-Ukraine War and its channels

Author

Listed:
  • Zhang, Qi
  • Yang, Kun
  • Hu, Yi
  • Jiao, Jianbin
  • Wang, Shouyang

Abstract

The Russia-Ukraine War, which has lasted for over a year, has been proven to significantly impact crude oil prices. This article aims to explore the channels through which the Russia-Ukraine War affects crude oil prices and to assist decision-makers in channel intervention to mitigate the impact of the war. To this end, the study proposes a research method called “Compare Real Data with Predicted Data and Match Influencing Factors” (CRP-MIF). The method reveals that the Russia-Ukraine War, through its impact on speculative activities, inventory, and supply-demand balance, combined with production announcements of Organization of the Petroleum Exporting Countries (OPEC), led to sharp short-term fluctuations in international oil prices and rapid price increases. Among these channels, speculative activities, inventory, and supply have a substantial impact. Relevant entities can weaken the impact of the war on oil prices and macroeconomic factors by intervening in these transmission channels. This study provides a new reference paradigm for studying the impact channels of major crisis events on commodity prices.

Suggested Citation

  • Zhang, Qi & Yang, Kun & Hu, Yi & Jiao, Jianbin & Wang, Shouyang, 2023. "Unveiling the impact of geopolitical conflict on oil prices: A case study of the Russia-Ukraine War and its channels," Energy Economics, Elsevier, vol. 126(C).
  • Handle: RePEc:eee:eneeco:v:126:y:2023:i:c:s0140988323004541
    DOI: 10.1016/j.eneco.2023.106956
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323004541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.106956?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shaoping & Feng, Hao & Gao, Da, 2023. "Testing for short explosive bubbles: A case of Brent oil futures price," Finance Research Letters, Elsevier, vol. 52(C).
    2. Zavadska, Miroslava & Morales, Lucía & Coughlan, Joseph, 2020. "Brent crude oil prices volatility during major crises," Finance Research Letters, Elsevier, vol. 32(C).
    3. Yao, Wei & Alexiou, Constantinos, 2022. "Exploring the transmission mechanism of speculative and inventory arbitrage activity to commodity price volatility. Novel evidence for the US economy," International Review of Financial Analysis, Elsevier, vol. 80(C).
    4. Zhang, Xun & Lai, K.K. & Wang, Shou-Yang, 2008. "A new approach for crude oil price analysis based on Empirical Mode Decomposition," Energy Economics, Elsevier, vol. 30(3), pages 905-918, May.
    5. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    6. Zhang, Xun & Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method," Energy Economics, Elsevier, vol. 31(5), pages 768-778, September.
    7. Xiao, Jihong & Wen, Fenghua & He, Zhifang, 2023. "Impact of geopolitical risks on investor attention and speculation in the oil market: Evidence from nonlinear and time-varying analysis," Energy, Elsevier, vol. 267(C).
    8. Morana, Claudio, 2013. "Oil price dynamics, macro-finance interactions and the role of financial speculation," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 206-226.
    9. Koch, Nicolas, 2014. "Tail events: A new approach to understanding extreme energy commodity prices," Energy Economics, Elsevier, vol. 43(C), pages 195-205.
    10. Huang, Jianbai & Ding, Qian & Zhang, Hongwei & Guo, Yaoqi & Suleman, Muhammad Tahir, 2021. "Nonlinear dynamic correlation between geopolitical risk and oil prices: A study based on high-frequency data," Research in International Business and Finance, Elsevier, vol. 56(C).
    11. Raza, Syed Ali & Guesmi, Khaled & Belaid, Fateh & Shah, Nida, 2022. "Time-frequency causality and connectedness between oil price shocks and the world food prices," Research in International Business and Finance, Elsevier, vol. 62(C).
    12. Hanif, Waqas & Areola Hernandez, Jose & Shahzad, Syed Jawad Hussain & Yoon, Seong-Min, 2021. "Tail dependence risk and spillovers between oil and food prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 195-209.
    13. Jacks, David S. & Stuermer, Martin, 2020. "What drives commodity price booms and busts?," Energy Economics, Elsevier, vol. 85(C).
    14. Qi Zhang & Yi Hu & Jianbin Jiao & Shouyang Wang, 2022. "Exploring the Trend of Commodity Prices: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    15. D'Ecclesia, Rita L. & Magrini, Emiliano & Montalbano, Pierluigi & Triulzi, Umberto, 2014. "Understanding recent oil price dynamics: A novel empirical approach," Energy Economics, Elsevier, vol. 46(S1), pages 11-17.
    16. Fleming, Jeff & Ostdiek, Barbara, 1999. "The impact of energy derivatives on the crude oil market," Energy Economics, Elsevier, vol. 21(2), pages 135-167, April.
    17. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    18. Kaufmann, Robert K. & Ullman, Ben, 2009. "Oil prices, speculation, and fundamentals: Interpreting causal relations among spot and futures prices," Energy Economics, Elsevier, vol. 31(4), pages 550-558, July.
    19. Gong, Xu & Guan, Keqin & Chen, Liqing & Liu, Tangyong & Fu, Chengbo, 2021. "What drives oil prices? — A Markov switching VAR approach," Resources Policy, Elsevier, vol. 74(C).
    20. Gong, Xu & Chen, Liqiang & Lin, Boqiang, 2020. "Analyzing dynamic impacts of different oil shocks on oil price," Energy, Elsevier, vol. 198(C).
    21. Zhang, Qi & Hu, Yi & Jiao, Jianbin & Wang, Shouyang, 2023. "Is refined oil price regulation a “shock absorber” for crude oil price shocks?," Energy Policy, Elsevier, vol. 173(C).
    22. Xian, Lu & He, Kaijian & Lai, Kin Keung, 2016. "Gold price analysis based on ensemble empirical model decomposition and independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 11-23.
    23. Amine Loutia & Constantin Mellios & Kostas Andriosopoulos, 2016. "Do OPEC announcements influence oil prices?," Post-Print hal-03968824, HAL.
    24. Lin, Hang & Zhang, Zhengjun, 2022. "Extreme co-movements between infectious disease events and crude oil futures prices: From extreme value analysis perspective," Energy Economics, Elsevier, vol. 110(C).
    25. Demirer, RIza & Kutan, Ali M., 2010. "The behavior of crude oil spot and futures prices around OPEC and SPR announcements: An event study perspective," Energy Economics, Elsevier, vol. 32(6), pages 1467-1476, November.
    26. Ju, Keyi & Su, Bin & Zhou, Dequn & Wu, Junmin & Liu, Lifan, 2016. "Macroeconomic performance of oil price shocks: Outlier evidence from nineteen major oil-related countries/regions," Energy Economics, Elsevier, vol. 60(C), pages 325-332.
    27. Ma, Richie Ruchuan & Xiong, Tao & Bao, Yukun, 2021. "The Russia-Saudi Arabia oil price war during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 102(C).
    28. Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Zhang & Yi Hu & Jianbin Jiao & Shouyang Wang, 2024. "The impact of Russia–Ukraine war on crude oil prices: an EMC framework," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    2. Qi Zhang & Yi Hu & Jianbin Jiao & Shouyang Wang, 2024. "Assessing the extent and persistence of major crisis events in the crude oil market and economy: evidence from the past 30 years," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-17, December.
    3. Qi Zhang & Yi Hu & Jianbin Jiao & Shouyang Wang, 2022. "Exploring the Trend of Commodity Prices: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    4. Zheng, Li & Sun, Yuying & Wang, Shouyang, 2024. "A novel interval-based hybrid framework for crude oil price forecasting and trading," Energy Economics, Elsevier, vol. 130(C).
    5. Tang, Ling & Zhang, Chengyuan & Li, Ling & Wang, Shouyang, 2020. "A multi-scale method for forecasting oil price with multi-factor search engine data," Applied Energy, Elsevier, vol. 257(C).
    6. Li, Ye & Chen, Yiyan & Lean, Hooi Hooi, 2024. "Geopolitical risk and crude oil price predictability: Novel decomposition ensemble approach based ternary interval number series," Resources Policy, Elsevier, vol. 92(C).
    7. Chen, Zhuoyi & Liu, Yuanyuan & Zhang, Hongwei, 2024. "Can geopolitical risks impact the long-run correlation between crude oil and clean energy markets? Evidence from a regime-switching analysis," Renewable Energy, Elsevier, vol. 229(C).
    8. Xiao, Jihong & Wen, Fenghua & He, Zhifang, 2023. "Impact of geopolitical risks on investor attention and speculation in the oil market: Evidence from nonlinear and time-varying analysis," Energy, Elsevier, vol. 267(C).
    9. Apostolakis, George N. & Floros, Christos & Gkillas, Konstantinos & Wohar, Mark, 2024. "Volatility spillovers across the spot and futures oil markets after news announcements," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    10. Hu, Zinan & Borjigin, Sumuya, 2024. "The amplifying role of geopolitical Risks, economic policy Uncertainty, and climate risks on Energy-Stock market volatility spillover across economic cycles," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    11. Chen, Hao & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2016. "Impacts of OPEC's political risk on the international crude oil prices: An empirical analysis based on the SVAR models," Energy Economics, Elsevier, vol. 57(C), pages 42-49.
    12. Lu Wang & Feng Ma & Guoshan Liu & Qiaoqi Lang, 2023. "Do extreme shocks help forecast oil price volatility? The augmented GARCH‐MIDAS approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 2056-2073, April.
    13. Anqiang Huang & Xinjun Liu & Changrui Rao & Yi Zhang & Yifan He, 2022. "A New Container Throughput Forecasting Paradigm under COVID-19," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    14. Jihong Xiao & Xuehong Zhu & Chuangxia Huang & Xiaoguang Yang & Fenghua Wen & Meirui Zhong, 2019. "A New Approach for Stock Price Analysis and Prediction Based on SSA and SVM," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 287-310, January.
    15. Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
    16. Lin, Tiantian & Liu, Dehong & Zhang, Lili & Lung, Peter, 2019. "The information content of realized volatility of sector indices in China’s stock market," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 625-640.
    17. Zhao, Jing, 2023. "Time-varying impact of geopolitical risk on natural resources prices: Evidence from the hybrid TVP-VAR model with large system," Resources Policy, Elsevier, vol. 82(C).
    18. Chen, Yanhui & Zhang, Chuan & He, Kaijian & Zheng, Aibing, 2018. "Multi-step-ahead crude oil price forecasting using a hybrid grey wave model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 98-110.
    19. Long, Wen & Zhao, Manyi & Tang, Yeran, 2021. "Can the Chinese volatility index reflect investor sentiment?," International Review of Financial Analysis, Elsevier, vol. 73(C).
    20. Ju, Keyi & Zhou, Dequn & Zhou, P. & Wu, Junmin, 2014. "Macroeconomic effects of oil price shocks in China: An empirical study based on Hilbert–Huang transform and event study," Applied Energy, Elsevier, vol. 136(C), pages 1053-1066.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:126:y:2023:i:c:s0140988323004541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.