IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v52y2023ics1544612322006730.html
   My bibliography  Save this article

Testing for short explosive bubbles: A case of Brent oil futures price

Author

Listed:
  • Wang, Shaoping
  • Feng, Hao
  • Gao, Da

Abstract

This paper considers the problem of detecting short explosive bubbles in financial data. Based on the backward sup Dickey-Fuller (BSDF), we propose a modified version of BSDF, namely mBSDF. We define the dating statistics by adding a modified term to the BSDF, enhancing the bubble emergence signal. We demonstrate the asymptotic distribution and the bubble duration estimates. A series of Monte Carlo simulations show that mBSDF significantly outperforms BSDF for shorter bubbles, and mBSDF can improve the bubble detection rate by up to 22.7%. As an empirical application, we apply the methods to the Brent crude oil futures price and the results confirm that mBSDF detects the latest oil spike shocked by the Russia-Ukraine conflict and almost all periods of explosive bubbles the oil market has experienced in recent years in contrast to BSDF, which further supports the superiority of mBSDF.

Suggested Citation

  • Wang, Shaoping & Feng, Hao & Gao, Da, 2023. "Testing for short explosive bubbles: A case of Brent oil futures price," Finance Research Letters, Elsevier, vol. 52(C).
  • Handle: RePEc:eee:finlet:v:52:y:2023:i:c:s1544612322006730
    DOI: 10.1016/j.frl.2022.103497
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612322006730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2022.103497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Historical Episodes Of Exuberance And Collapse In The S&P 500," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(4), pages 1043-1078, November.
    2. Wen-Yuan Lin & I-Chun Tsai, 2016. "Asymmetric Fluctuating Behavior of China's Housing Prices," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 24(2), pages 107-126, March.
    3. David I. Harvey & Stephen J. Leybourne & Robert Sollis, 2015. "Recursive Right-Tailed Unit Root Tests for an Explosive Asset Price Bubble," Journal of Financial Econometrics, Oxford University Press, vol. 13(1), pages 166-187.
    4. Bettendorf, Timo & Chen, Wenjuan, 2013. "Are there bubbles in the Sterling-dollar exchange rate? New evidence from sequential ADF tests," Economics Letters, Elsevier, vol. 120(2), pages 350-353.
    5. Peter C. B. Phillips & Jun Yu, 2011. "Dating the timeline of financial bubbles during the subprime crisis," Quantitative Economics, Econometric Society, vol. 2(3), pages 455-491, November.
    6. Peter C. B. Phillips & Yangru Wu & Jun Yu, 2011. "EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 201-226, February.
    7. Hamilton, James D., 2003. "What is an oil shock?," Journal of Econometrics, Elsevier, vol. 113(2), pages 363-398, April.
    8. Harvey, David I. & Leybourne, Stephen J. & Sollis, Robert & Taylor, A.M. Robert, 2016. "Tests for explosive financial bubbles in the presence of non-stationary volatility," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 548-574.
    9. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Limit Theory Of Real‐Time Detectors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(4), pages 1079-1134, November.
    10. Nicholas Apergis & Arusha Cooray & Mobeen Ur Rehman, 2018. "Do Energy Prices Affect U.S. Investor Sentiment?," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 19(2), pages 125-140, April.
    11. Phillips, Peter C.B. & Shi, Shu-Ping, 2018. "Financial Bubble Implosion And Reverse Regression," Econometric Theory, Cambridge University Press, vol. 34(4), pages 705-753, August.
    12. Nguyen, Quynh Nhu & Waters, George A., 2022. "Detecting periodically collapsing bubbles in the S&P 500," The Quarterly Review of Economics and Finance, Elsevier, vol. 83(C), pages 83-91.
    13. Yizhi Wang & Florian Horky & Lennart J. Baals & Brian M. Lucey & Samuel A. Vigne, 2022. "Bubbles all the way down? Detecting and date-stamping bubble behaviours in NFT and DeFi markets," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 20(4), pages 415-436, October.
    14. Almudhaf, Fahad, 2017. "Speculative bubbles and irrational exuberance in African stock markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 13(C), pages 28-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panpan Zhu & Qingjie Zhou & Yinpeng Zhang, 2024. "Investor attention and consumer price index inflation rate: Evidence from the United States," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    2. Chen, Weijia & Huang, Shupei & An, Haizhong, 2023. "Revealing dynamic intrinsic temporal and spatial scale characteristics of oil price volatility in bubble and non-bubble periods," Finance Research Letters, Elsevier, vol. 55(PA).
    3. Zhang, Qi & Yang, Kun & Hu, Yi & Jiao, Jianbin & Wang, Shouyang, 2023. "Unveiling the impact of geopolitical conflict on oil prices: A case study of the Russia-Ukraine War and its channels," Energy Economics, Elsevier, vol. 126(C).
    4. Assaf, Ata & Demir, Ender & Ersan, Oguz, 2024. "Detecting and date-stamping bubbles in fan tokens," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 98-113.
    5. Nicolas Cofre & Magdalena Mosionek-Schweda, 2023. "A simulated electronic market with speculative behaviour and bubble formation," Papers 2311.12247, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skrobotov Anton, 2023. "Testing for explosive bubbles: a review," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-26, January.
    2. Assaf, Ata & Demir, Ender & Ersan, Oguz, 2024. "Detecting and date-stamping bubbles in fan tokens," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 98-113.
    3. Lui, Yiu Lim & Phillips, Peter C.B. & Yu, Jun, 2024. "Robust testing for explosive behavior with strongly dependent errors," Journal of Econometrics, Elsevier, vol. 238(2).
    4. Esteve, Vicente & Prats, María A., 2023. "Testing explosive bubbles with time-varying volatility: The case of Spanish public debt," Finance Research Letters, Elsevier, vol. 51(C).
    5. Yang, Hui & Ferrer, Román, 2023. "Explosive behavior in the Chinese stock market: A sectoral analysis," Pacific-Basin Finance Journal, Elsevier, vol. 81(C).
    6. Pang, Tianxiao & Du, Lingjie & Chong, Terence Tai-Leung, 2021. "Estimating multiple breaks in nonstationary autoregressive models," Journal of Econometrics, Elsevier, vol. 221(1), pages 277-311.
    7. Astill, Sam & Taylor, A.M. Robert & Kellard, Neil & Korkos, Ioannis, 2023. "Using covariates to improve the efficacy of univariate bubble detection methods," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 342-366.
    8. Eiji Kurozumi, 2021. "Asymptotic Behavior of Delay Times of Bubble Monitoring Tests," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(3), pages 314-337, May.
    9. Yang Hu, 2023. "A review of Phillips‐type right‐tailed unit root bubble detection tests," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 141-158, February.
    10. Wang, Xichen & Yan, Ji (Karena) & Yan, Cheng & Gozgor, Giray, 2021. "Emerging stock market exuberance and international short-term flows," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    11. Gharib, Cheima & Mefteh-Wali, Salma & Serret, Vanessa & Ben Jabeur, Sami, 2021. "Impact of COVID-19 pandemic on crude oil prices: Evidence from Econophysics approach," Resources Policy, Elsevier, vol. 74(C).
    12. Sinelnikova-Muryleva, Elena & Skrobotov, Anton, 2017. "Testing time series for the bubbles (with application to Russian data)," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 46, pages 90-103.
    13. Francisco Blasques & Siem Jan Koopman & Gabriele Mingoli, 2023. "Observation-Driven filters for Time- Series with Stochastic Trends and Mixed Causal Non-Causal Dynamics," Tinbergen Institute Discussion Papers 23-065/III, Tinbergen Institute, revised 01 Mar 2024.
    14. Cervera, Ignacio & Figuerola-Ferretti, Isabel, 2024. "Credit risk and bubble behavior of credit default swaps in the corporate energy sector," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 702-731.
    15. Verena Monschang & Bernd Wilfling, 2021. "Sup-ADF-style bubble-detection methods under test," Empirical Economics, Springer, vol. 61(1), pages 145-172, July.
    16. Chen, Mei-Ping & Lin, Yu-Hui & Tseng, Chun-Yao & Chen, Wen-Yi, 2015. "Bubbles in health care: Evidence from the U.S., U.K., and German stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 193-205.
    17. Pedersen, Thomas Quistgaard & Schütte, Erik Christian Montes, 2020. "Testing for explosive bubbles in the presence of autocorrelated innovations," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 207-225.
    18. Gomis-Porqueras, Pedro & Shi, Shuping & Tan, David, 2022. "Gold as a financial instrument," Journal of Commodity Markets, Elsevier, vol. 27(C).
    19. Cretí, Anna & Joëts, Marc, 2017. "Multiple bubbles in the European Union Emission Trading Scheme," Energy Policy, Elsevier, vol. 107(C), pages 119-130.
    20. Mehmet Balcilar & Rangan Gupta & Charl Jooste & Omid Ranjbar, 2015. "Characterising the South African Business Cycle: Is GDP Difference-Stationary or Trend-Stationary in a Markov-Switching Setup?," Working Papers 201529, University of Pretoria, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:52:y:2023:i:c:s1544612322006730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.