IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v285y2020i1p393-404.html
   My bibliography  Save this article

Assessing sustainability performance of global supply chains: An input-output modeling approach

Author

Listed:
  • Wang, H.
  • Pan, Chen
  • Wang, Qunwei
  • Zhou, P.

Abstract

Measuring the sustainability performance of supply chains is fundamental to sustainable supply chain management. Sustainability performance is usually evaluated from multiple aspects within the triple bottom line framework. With globalization, supply chains have also been characterized by the complex and global natures. Ignoring the multidimensional and transnational features imposes challenges on the performance assessment of global supply chains (GSCs). To resolve this issue, we propose an input-output modeling approach based on the multi-region input-output (MRIO) model and the data envelopment analysis (DEA) technique, which is able to account for the multidimensional characteristic of supply chains in a global context. Two indices are introduced to measure the status and evolvement of environmental sustainability performance of GSCs. We apply the proposed approach to empirically examine the environmental performance of GSCs of the manufacturing sectors in 16 major economies during 2005–2014. The average environmental inefficiency of the economies was considerable, and roughly 40% of the pollution could potentially be reduced along GSCs. Overall the environmental performance of GSCs averagely rose by 20.6% during the study period with fluctuations and regional/sectoral heterogeneities observed.

Suggested Citation

  • Wang, H. & Pan, Chen & Wang, Qunwei & Zhou, P., 2020. "Assessing sustainability performance of global supply chains: An input-output modeling approach," European Journal of Operational Research, Elsevier, vol. 285(1), pages 393-404.
  • Handle: RePEc:eee:ejores:v:285:y:2020:i:1:p:393-404
    DOI: 10.1016/j.ejor.2020.01.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720300941
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.01.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Ci & Yan, Hong, 2011. "Network DEA model for supply chain performance evaluation," European Journal of Operational Research, Elsevier, vol. 213(1), pages 147-155, August.
    2. Acquaye, Adolf & Ibn-Mohammed, Taofeeq & Genovese, Andrea & Afrifa, Godfred A & Yamoah, Fred A & Oppon, Eunice, 2018. "A quantitative model for environmentally sustainable supply chain performance measurement," European Journal of Operational Research, Elsevier, vol. 269(1), pages 188-205.
    3. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    4. Du, Juan & Chen, Yao & Huang, Ying, 2018. "A Modified Malmquist-Luenberger Productivity Index: Assessing Environmental Productivity Performance in China," European Journal of Operational Research, Elsevier, vol. 269(1), pages 171-187.
    5. Dariush Khezrimotlagh & Yao Chen, 2018. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 217-234, Springer.
    6. Chen, Chien-Ming, 2013. "A critique of non-parametric efficiency analysis in energy economics studies," Energy Economics, Elsevier, vol. 38(C), pages 146-152.
    7. Pasurka, Carl Jr., 2006. "Decomposing electric power plant emissions within a joint production framework," Energy Economics, Elsevier, vol. 28(1), pages 26-43, January.
    8. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    9. H. Wang & B.W. Ang & P. Zhou, 2018. "Decomposing aggregate CO2 emission changes with heterogeneity: An extended production-theoretical approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    10. Pulina, Manuela & Detotto, Claudio & Paba, Antonello, 2010. "An investigation into the relationship between size and efficiency of the Italian hospitality sector: A window DEA approach," European Journal of Operational Research, Elsevier, vol. 204(3), pages 613-620, August.
    11. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    12. Kim, Bosung & Park, Kun Soo & Jung, Se-Youn & Park, Sang Hun, 2018. "Offshoring and outsourcing in a global supply chain: Impact of the arm’s length regulation on transfer pricing," European Journal of Operational Research, Elsevier, vol. 266(1), pages 88-98.
    13. Morris A. Cohen & Suman Mallik, 1997. "Global Supply Chains: Research And Applications," Production and Operations Management, Production and Operations Management Society, vol. 6(3), pages 193-210, September.
    14. Chien-Ming Chen, 2014. "Evaluating eco-efficiency with data envelopment analysis: an analytical reexamination," Annals of Operations Research, Springer, vol. 214(1), pages 49-71, March.
    15. Fare, Rolf, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    16. Pourakbar, M. & Zuidwijk, R.A., 2018. "The role of customs in securing containerized global supply chains," European Journal of Operational Research, Elsevier, vol. 271(1), pages 331-340.
    17. Kao, Chiang, 2009. "Efficiency measurement for parallel production systems," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1107-1112, August.
    18. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "Measuring environmental performance under different environmental DEA technologies," Energy Economics, Elsevier, vol. 30(1), pages 1-14, January.
    19. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    20. Mirhedayatian, Seyed Mostafa & Azadi, Majid & Farzipoor Saen, Reza, 2014. "A novel network data envelopment analysis model for evaluating green supply chain management," International Journal of Production Economics, Elsevier, vol. 147(PB), pages 544-554.
    21. Fare, R. & Grosskopf, S. & Hernandez-Sancho, F., 2004. "Environmental performance: an index number approach," Resource and Energy Economics, Elsevier, vol. 26(4), pages 343-352, December.
    22. Dou, Yijie & Zhu, Qinghua & Sarkis, Joseph, 2014. "Evaluating green supplier development programs with a grey-analytical network process-based methodology," European Journal of Operational Research, Elsevier, vol. 233(2), pages 420-431.
    23. Chien-Ming Chen & Magali A. Delmas, 2012. "Measuring Eco-Inefficiency: A New Frontier Approach," Operations Research, INFORMS, vol. 60(5), pages 1064-1079, October.
    24. Zhi Wang & Shang-Jin Wei & Xinding Yu & Kunfu Zhu, 2017. "Characterizing Global Value Chains: Production Length and Upstreamness," NBER Working Papers 23261, National Bureau of Economic Research, Inc.
    25. Wang, H. & Ang, B.W. & Wang, Q.W. & Zhou, P., 2017. "Measuring energy performance with sectoral heterogeneity: A non-parametric frontier approach," Energy Economics, Elsevier, vol. 62(C), pages 70-78.
    26. Kao, Chiang, 2017. "Measurement and decomposition of the Malmquist productivity index for parallel production systems," Omega, Elsevier, vol. 67(C), pages 54-59.
    27. Zhi Wang & Shang-Jin Wei & Xinding Yu & Kunfu Zhu, 2017. "Measures of Participation in Global Value Chains and Global Business Cycles," NBER Working Papers 23222, National Bureau of Economic Research, Inc.
    28. Liu, Qian & Zheng, Lucy, 2016. "Assessing the economic performance of an environmental sustainable supply chain in reducing environmental externalitiesAuthor-Name: Ding, Huiping," European Journal of Operational Research, Elsevier, vol. 255(2), pages 463-480.
    29. Wang, H. & Zhou, P. & Zhou, D.Q., 2013. "Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis," Energy Economics, Elsevier, vol. 40(C), pages 795-803.
    30. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    31. Rolf Färe & Shawna Grosskopf, 2000. "Theory and Application of Directional Distance Functions," Journal of Productivity Analysis, Springer, vol. 13(2), pages 93-103, March.
    32. Wood, Richard & Lenzen, Manfred, 2009. "Structural path decomposition," Energy Economics, Elsevier, vol. 31(3), pages 335-341, May.
    33. Brandenburg, Marcus & Govindan, Kannan & Sarkis, Joseph & Seuring, Stefan, 2014. "Quantitative models for sustainable supply chain management: Developments and directions," European Journal of Operational Research, Elsevier, vol. 233(2), pages 299-312.
    34. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, H. & Zhou, P. & Xie, Bai-Chen & Zhang, N., 2019. "Assessing drivers of CO2 emissions in China's electricity sector: A metafrontier production-theoretical decomposition analysis," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1096-1107.
    2. Wang, H. & Zhou, P., 2018. "Multi-country comparisons of CO2 emission intensity: The production-theoretical decomposition analysis approach," Energy Economics, Elsevier, vol. 74(C), pages 310-320.
    3. Chen, Xiaodong & Guo, Anda & Miao, Zhuang & Zhu, Pengyu, 2024. "Assessing the performance of the transport sector within the global supply chain context: Decomposition of energy and environmental productivity," Applied Energy, Elsevier, vol. 358(C).
    4. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    5. Wang, Hui & Li, Rupeng & Zhang, Ning & Zhou, Peng & Wang, Qiang, 2020. "Assessing the role of technology in global manufacturing energy intensity change: A production-theoretical decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    6. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    7. Wang, H. & Ang, B.W. & Wang, Q.W. & Zhou, P., 2017. "Measuring energy performance with sectoral heterogeneity: A non-parametric frontier approach," Energy Economics, Elsevier, vol. 62(C), pages 70-78.
    8. Molinos-Senante, María & Hernández-Sancho, Francesc & Mocholí-Arce, Manuel & Sala-Garrido, Ramón, 2014. "Economic and environmental performance of wastewater treatment plants: Potential reductions in greenhouse gases emissions," Resource and Energy Economics, Elsevier, vol. 38(C), pages 125-140.
    9. Chen, Chien-Ming, 2013. "A critique of non-parametric efficiency analysis in energy economics studies," Energy Economics, Elsevier, vol. 38(C), pages 146-152.
    10. Liu, Guangtian & Wang, Bing & Zhang, Ning, 2016. "A coin has two sides: Which one is driving China’s green TFP growth?," Economic Systems, Elsevier, vol. 40(3), pages 481-498.
    11. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    12. Stergiou, Eirini, 2022. "Environmental Efficiency of European Industries across Sectors and Countries," MPRA Paper 114635, University Library of Munich, Germany.
    13. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    14. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    15. Hongli Liu & Xiaoyu Yan & Jinhua Cheng & Jun Zhang & Yan Bu, 2021. "Driving Factors for the Spatiotemporal Heterogeneity in Technical Efficiency of China’s New Energy Industry," Energies, MDPI, vol. 14(14), pages 1-21, July.
    16. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2020. "An Efficiency Perspective on Carbon Emissions and Financial Performance," Ecological Economics, Elsevier, vol. 175(C).
    17. Zuoren Sun & Chao An & Huachen Sun, 2018. "Regional Differences in Energy and Environmental Performance: An Empirical Study of 283 Cities in China," Sustainability, MDPI, vol. 10(7), pages 1-28, July.
    18. Song, Malin & Zhang, Jie & Wang, Shuhong, 2015. "Review of the network environmental efficiencies of listed petroleum enterprises in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 65-71.
    19. Kounetas, Konstantinos & Zervopoulos, Panagiotis D., 2019. "A cross-country evaluation of environmental performance: Is there a convergence-divergence pattern in technology gaps?," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1136-1148.
    20. Wang, H., 2015. "A generalized MCDA–DEA (multi-criterion decision analysis–data envelopment analysis) approach to construct slacks-based composite indicator," Energy, Elsevier, vol. 80(C), pages 114-122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:285:y:2020:i:1:p:393-404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.