IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v248y2016i3p1113-1122.html
   My bibliography  Save this article

Impact of forecast errors on expansion planning of power systems with a renewables target

Author

Listed:
  • Pineda, Salvador
  • Morales, Juan M.
  • Boomsma, Trine K.

Abstract

This paper analyzes the impact of production forecast errors on the expansion planning of a power system and investigates the influence of market design to facilitate the integration of renewable generation. For this purpose, we propose a programming modeling framework to determine the generation and transmission expansion plan that minimizes system-wide investment and operating costs, while ensuring a given share of renewable generation in the electricity supply. Unlike existing ones, this framework includes both a day-ahead and a balancing market so as to capture the impact of both production forecasts and the associated prediction errors. Within this framework, we consider two paradigmatic market designs that essentially differ in whether the day-ahead generation schedule and the subsequent balancing re-dispatch are co-optimized or not. The main features and results of the model set-ups are discussed using an illustrative four-node example and a more realistic 24-node case study.

Suggested Citation

  • Pineda, Salvador & Morales, Juan M. & Boomsma, Trine K., 2016. "Impact of forecast errors on expansion planning of power systems with a renewables target," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1113-1122.
  • Handle: RePEc:eee:ejores:v:248:y:2016:i:3:p:1113-1122
    DOI: 10.1016/j.ejor.2015.08.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715007286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.08.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neuhoff, Karsten & Ehrenmann, Andreas & Butler, Lucy & Cust, Jim & Hoexter, Harriet & Keats, Kim & Kreczko, Adam & Sinden, Graham, 2008. "Space and time: Wind in an investment planning model," Energy Economics, Elsevier, vol. 30(4), pages 1990-2008, July.
    2. Andreas Ehrenmann & Yves Smeers, 2011. "Generation Capacity Expansion in a Risky Environment: A Stochastic Equilibrium Analysis," Operations Research, INFORMS, vol. 59(6), pages 1332-1346, December.
    3. Geoffrey Pritchard & Golbon Zakeri & Andrew Philpott, 2010. "A Single-Settlement, Energy-Only Electric Power Market for Unpredictable and Intermittent Participants," Operations Research, INFORMS, vol. 58(4-part-2), pages 1210-1219, August.
    4. Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
    5. De Jonghe, Cedric & Delarue, Erik & Belmans, Ronnie & D'haeseleer, William, 2011. "Determining optimal electricity technology mix with high level of wind power penetration," Applied Energy, Elsevier, vol. 88(6), pages 2231-2238, June.
    6. Francisco Munoz & Enzo Sauma & Benjamin Hobbs, 2013. "Approximations in power transmission planning: implications for the cost and performance of renewable portfolio standards," Journal of Regulatory Economics, Springer, vol. 43(3), pages 305-338, June.
    7. EHRENMANN, Andreas & SMEERS, Yves, 2011. "Generation capacity expansion in a risky environment: a stochastic equilibrium analysis," LIDAM Reprints CORE 2379, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Parpas, Panos & Webster, Mort, 2014. "A stochastic multiscale model for electricity generation capacity expansion," European Journal of Operational Research, Elsevier, vol. 232(2), pages 359-374.
    9. Alfredo Garcia & Zhijiang Shen, 2010. "Equilibrium Capacity Expansion Under Stochastic Demand Growth," Operations Research, INFORMS, vol. 58(1), pages 30-42, February.
    10. Lynch, Muireann Á. & Tol, Richard S.J. & O'Malley, Mark J., 2012. "Optimal interconnection and renewable targets for north-west Europe," Energy Policy, Elsevier, vol. 51(C), pages 605-617.
    11. Wang, Tan & Gong, Yu & Jiang, Chuanwen, 2014. "A review on promoting share of renewable energy by green-trading mechanisms in power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 923-929.
    12. Frederic H. Murphy & Yves Smeers, 2005. "Generation Capacity Expansion in Imperfectly Competitive Restructured Electricity Markets," Operations Research, INFORMS, vol. 53(4), pages 646-661, August.
    13. Hobbs, Benjamin F., 1995. "Optimization methods for electric utility resource planning," European Journal of Operational Research, Elsevier, vol. 83(1), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Munoz, Francisco D. & Pumarino, Bruno J. & Salas, Ignacio A., 2017. "Aiming low and achieving it: A long-term analysis of a renewable policy in Chile," Energy Economics, Elsevier, vol. 65(C), pages 304-314.
    2. Domínguez, Ruth & Vitali, Sebastiano & Carrión, Miguel & Moriggia, Vittorio, 2021. "Analysing decarbonizing strategies in the European power system applying stochastic dominance constraints," Energy Economics, Elsevier, vol. 101(C).
    3. Sharifzadeh, Mahdi & Lubiano-Walochik, Helena & Shah, Nilay, 2017. "Integrated renewable electricity generation considering uncertainties: The UK roadmap to 50% power generation from wind and solar energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 385-398.
    4. Carrión, Miguel & Domínguez, Ruth & Zárate-Miñano, Rafael, 2019. "Influence of the controllability of electric vehicles on generation and storage capacity expansion decisions," Energy, Elsevier, vol. 189(C).
    5. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    6. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    7. Feng, Li & Liu, Jiajun & Lu, Haitao & Liu, Bingzhi & Chen, Yuning & Wu, Shenyu, 2022. "Robust operation of distribution network based on photovoltaic/wind energy resources in condition of COVID-19 pandemic considering deterministic and probabilistic approaches," Energy, Elsevier, vol. 261(PB).
    8. Ramírez-Sagner, Gonzalo & Muñoz, Francisco D., 2019. "The effect of head-sensitive hydropower approximations on investments and operations in planning models for policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 38-47.
    9. Moreira, Alexandre & Pozo, David & Street, Alexandre & Sauma, Enzo & Strbac, Goran, 2021. "Climate‐aware generation and transmission expansion planning: A three‐stage robust optimization approach," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1099-1118.
    10. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    11. Henrik C. Bylling & Salvador Pineda & Trine K. Boomsma, 2020. "The impact of short-term variability and uncertainty on long-term power planning," Annals of Operations Research, Springer, vol. 284(1), pages 199-223, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pineda, Salvador & Boomsma, Trine K. & Wogrin, Sonja, 2018. "Renewable generation expansion under different support schemes: A stochastic equilibrium approach," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1086-1099.
    2. Mohammad Rasouli & Demosthenis Teneketzis, 2021. "Economizing the Uneconomic: Markets for Reliable, Sustainable, and Price Efficient Electricity," Sustainability, MDPI, vol. 13(8), pages 1-38, April.
    3. Go, Roderick S. & Munoz, Francisco D. & Watson, Jean-Paul, 2016. "Assessing the economic value of co-optimized grid-scale energy storage investments in supporting high renewable portfolio standards," Applied Energy, Elsevier, vol. 183(C), pages 902-913.
    4. S. Oliveira, Fernando & William-Rioux, Bertrand & Pierru, Axel, 2023. "Capacity expansion in liberalized electricity markets with locational pricing and renewable energy investments," Energy Economics, Elsevier, vol. 127(PB).
    5. Filomena, Tiago Pascoal & Campos-Náñez, Enrique & Duffey, Michael Robert, 2014. "Technology selection and capacity investment under uncertainty," European Journal of Operational Research, Elsevier, vol. 232(1), pages 125-136.
    6. Grimm, Veronika & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2017. "Uniqueness of market equilibrium on a network: A peak-load pricing approach," European Journal of Operational Research, Elsevier, vol. 261(3), pages 971-983.
    7. Hach, Daniel & Chyong, Chi Kong & Spinler, Stefan, 2016. "Capacity market design options: A dynamic capacity investment model and a GB case study," European Journal of Operational Research, Elsevier, vol. 249(2), pages 691-705.
    8. Daniel Hach & Stefan Spinler, 2018. "Robustness of capacity markets: a stochastic dynamic capacity investment model," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(2), pages 517-540, March.
    9. Munoz, Francisco D. & van der Weijde, Adriaan Hendrik & Hobbs, Benjamin F. & Watson, Jean-Paul, 2017. "Does risk aversion affect transmission and generation planning? A Western North America case study," Energy Economics, Elsevier, vol. 64(C), pages 213-225.
    10. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    11. Bhagwat, Pradyumna C. & Marcheselli, Anna & Richstein, Jörn C. & Chappin, Emile J. L. & Vries, Laurens J. De, 2017. "An analysis of a forward capacity market with long-term contracts," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 111, pages 255-267.
    12. Bhagwat, Pradyumna C. & Marcheselli, Anna & Richstein, Jörn C. & Chappin, Emile J.L. & De Vries, Laurens J., 2017. "An analysis of a forward capacity market with long-term contracts," Energy Policy, Elsevier, vol. 111(C), pages 255-267.
    13. Dane A. Schiro & Benjamin F. Hobbs & Jong-Shi Pang, 2016. "Perfectly competitive capacity expansion games with risk-averse participants," Computational Optimization and Applications, Springer, vol. 65(2), pages 511-539, November.
    14. Dorea Chin & Afzal Siddiqui, 2014. "Capacity expansion and forward contracting in a duopolistic power sector," Computational Management Science, Springer, vol. 11(1), pages 57-86, January.
    15. Henrik C. Bylling & Salvador Pineda & Trine K. Boomsma, 2020. "The impact of short-term variability and uncertainty on long-term power planning," Annals of Operations Research, Springer, vol. 284(1), pages 199-223, January.
    16. Hagspiel, Simeon, 2018. "Reliability with interdependent suppliers," European Journal of Operational Research, Elsevier, vol. 268(1), pages 161-173.
    17. Densing, M. & Panos, E. & Hirschberg, S., 2016. "Meta-analysis of energy scenario studies: Example of electricity scenarios for Switzerland," Energy, Elsevier, vol. 109(C), pages 998-1015.
    18. Biefel, Christian & Liers, Frauke & Rolfes, Jan & Schewe, Lars & Zöttl, Gregor, 2022. "Robust market equilibria under uncertain cost," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1230-1241.
    19. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    20. De Jonghe, C. & Hobbs, B. F. & Belmans, R., 2011. "Integrating short-term demand response into long-term investment planning," Cambridge Working Papers in Economics 1132, Faculty of Economics, University of Cambridge.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:248:y:2016:i:3:p:1113-1122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.