IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v238y2014i2p607-619.html
   My bibliography  Save this article

An Activity-Based Costing decision model for life cycle assessment in green building projects

Author

Listed:
  • Tsai, Wen-Hsien
  • Yang, Chih-Hao
  • Chang, Jui-Chu
  • Lee, Hsiu-Li

Abstract

Carbon emissions are an increasingly important consideration in sustainable environmental development. In the green building industry, green construction cost controls and low-carbon construction methods are considered to be the key barriers encountered. Based on Corporate Social Responsibility (CSR) policy, management of carbon emissions from green building projects contributes to the acquisition of accurate building cost information and to a reduction in the environmental impact of these projects. This study focuses on the CO2 emission costs and low-carbon construction methods, and proposes a 0–1 mixed integer programming (0–1 MIP) decision model for integrated green building projects, using an Activity-Based Cost (ABC) and life cycle assessment (LCA) approach. The major contributions of this study are as follows: (1) the integrated model can help construction company managers to more accurately understand how to allocate resources and funding for energy saving activities to each green building through appropriate cost drivers; (2) this model provides a pre-construction decision-making tool which will assist management in bidding on environmentally-friendly construction projects; and (3) this study contributes to the innovation operation research (OR) literature, especially in regard to incorporating the life cycle assessment measurement into construction cost management by utilizing a mixed decision model for green building projects.

Suggested Citation

  • Tsai, Wen-Hsien & Yang, Chih-Hao & Chang, Jui-Chu & Lee, Hsiu-Li, 2014. "An Activity-Based Costing decision model for life cycle assessment in green building projects," European Journal of Operational Research, Elsevier, vol. 238(2), pages 607-619.
  • Handle: RePEc:eee:ejores:v:238:y:2014:i:2:p:607-619
    DOI: 10.1016/j.ejor.2014.03.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714002537
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wendy Y. Chen & C.Y. Jim, 2011. "Resident valuation and expectation of the urban greening project in Zhuhai, China," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 54(7), pages 851-869, October.
    2. Lin, Boqiang & Li, Xuehui, 2011. "The effect of carbon tax on per capita CO2 emissions," Energy Policy, Elsevier, vol. 39(9), pages 5137-5146, September.
    3. Wen-Hsien Tsai & Sin-Jin Lin & Ya-Fen Lee & Yao-Chung Chang & Jui-Ling Hsu, 2013. "Construction method selection for green building projects to improve environmental sustainability by using an MCDM approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(10), pages 1487-1510, December.
    4. Kee, Robert, 2008. "The sufficiency of product and variable costs for production-related decisions when economies of scope are present," International Journal of Production Economics, Elsevier, vol. 114(2), pages 682-696, August.
    5. Dekker, Rommert & Bloemhof, Jacqueline & Mallidis, Ioannis, 2012. "Operations Research for green logistics – An overview of aspects, issues, contributions and challenges," European Journal of Operational Research, Elsevier, vol. 219(3), pages 671-679.
    6. Johansson, Bengt, 2006. "Climate policy instruments and industry--effects and potential responses in the Swedish context," Energy Policy, Elsevier, vol. 34(15), pages 2344-2360, October.
    7. Chang, Yuan & Ries, Robert J. & Wang, Yaowu, 2010. "The embodied energy and environmental emissions of construction projects in China: An economic input-output LCA model," Energy Policy, Elsevier, vol. 38(11), pages 6597-6603, November.
    8. Hoinka, Krzysztof & Ziębik, Andrzej, 2010. "Mathematical model for the choice of an energy management structure of complex buildings," Energy, Elsevier, vol. 35(2), pages 1146-1156.
    9. Zheng, Guozhong & Jing, Youyin & Huang, Hongxia & Zhang, Xutao & Gao, Yuefen, 2009. "Application of Life Cycle Assessment (LCA) and extenics theory for building energy conservation assessment," Energy, Elsevier, vol. 34(11), pages 1870-1879.
    10. Absi, Nabil & Dauzère-Pérès, Stéphane & Kedad-Sidhoum, Safia & Penz, Bernard & Rapine, Christophe, 2013. "Lot sizing with carbon emission constraints," European Journal of Operational Research, Elsevier, vol. 227(1), pages 55-61.
    11. Derigs, Ulrich & Illing, Stefan, 2013. "Does EU ETS instigate Air Cargo network reconfiguration? A model-based analysis," European Journal of Operational Research, Elsevier, vol. 225(3), pages 518-527.
    12. Antunes, C.Henggeler & Martins, A.Gomes & Brito, Isabel Sofia, 2004. "A multiple objective mixed integer linear programming model for power generation expansion planning," Energy, Elsevier, vol. 29(4), pages 613-627.
    13. Lee, Cheng F. & Lin, Sue J. & Lewis, Charles, 2008. "Analysis of the impacts of combining carbon taxation and emission trading on different industry sectors," Energy Policy, Elsevier, vol. 36(2), pages 722-729, February.
    14. Li, Y.P. & Huang, G.H. & Nie, X.H. & Nie, S.L., 2008. "A two-stage fuzzy robust integer programming approach for capacity planning of environmental management systems," European Journal of Operational Research, Elsevier, vol. 189(2), pages 399-420, September.
    15. Tsai, Wen-Hsien & Lee, Kuen-Chang & Liu, Jau-Yang & Lin, Hsiu-Ling & Chou, Yu-Wei & Lin, Sin-Jin, 2012. "A mixed activity-based costing decision model for green airline fleet planning under the constraints of the European Union Emissions Trading Scheme," Energy, Elsevier, vol. 39(1), pages 218-226.
    16. Liu, Pei & Pistikopoulos, Efstratios N. & Li, Zheng, 2010. "An energy systems engineering approach to the optimal design of energy systems in commercial buildings," Energy Policy, Elsevier, vol. 38(8), pages 4224-4231, August.
    17. Kunsch, P. & Springael, J., 2008. "Simulation with system dynamics and fuzzy reasoning of a tax policy to reduce CO2 emissions in the residential sector," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1285-1299, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiaoling, 2015. "Green real estate development in China: State of art and prospect agenda—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 1-13.
    2. Wang, Xiaojun & Chan, Hing Kai & Li, Dong, 2015. "A case study of an integrated fuzzy methodology for green product development," European Journal of Operational Research, Elsevier, vol. 241(1), pages 212-223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:238:y:2014:i:2:p:607-619. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.