IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v217y2012i2p439-447.html
   My bibliography  Save this article

A model for efficiency-based resource integration in services

Author

Listed:
  • White, Sheneeta W.
  • Badinelli, Ralph D.

Abstract

Service processes, such as consulting, require coordinated efforts from the service recipient (client) and the service provider in order to deliver the desired output – a process known as resource integration. Client involvement directly affects the efficiency of service processes, thereby affecting capacity decisions. We present a mathematical model of the resource-integration decision for a service process through which the client and the service provider co-produce resource outputs. This workforce planning model is unique because we include the extent of client involvement as a policy variable and introduce to the resource-planning model efficiency and quality performance measures, which are functions of client involvement. The optimization of resource planning for services produces interesting policy prescriptions due to the presence of a client-modulated efficiency function in the capacity constraint and subjective client value placed on participation in the service process. The primary results of this research are optimal decision rules that provide insights into the optimal levels of client involvement and provider commitment in resource integration.

Suggested Citation

  • White, Sheneeta W. & Badinelli, Ralph D., 2012. "A model for efficiency-based resource integration in services," European Journal of Operational Research, Elsevier, vol. 217(2), pages 439-447.
  • Handle: RePEc:eee:ejores:v:217:y:2012:i:2:p:439-447
    DOI: 10.1016/j.ejor.2011.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711008125
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheryl Gaimon & Gerald L. Thompson, 1984. "A Distributed Parameter Cohort Personnel Planning Model That Uses Cross-Sectional Data," Management Science, INFORMS, vol. 30(6), pages 750-764, June.
    2. Athanassopoulos, Antreas D., 1995. "Goal programming & data envelopment analysis (GoDEA) for target-based multi-level planning: Allocating central grants to the Greek local authorities," European Journal of Operational Research, Elsevier, vol. 87(3), pages 535-550, December.
    3. Charles C. Holt & Franco Modigliani & Herbert A. Simon, 1955. "A Linear Decision Rule for Production and Employment Scheduling," Management Science, INFORMS, vol. 2(1), pages 1-30, October.
    4. Charles C. Holt & Franco Modigliani & John F. Muth, 1956. "Derivation of a Linear Decision Rule for Production and Employment," Management Science, INFORMS, vol. 2(2), pages 159-177, January.
    5. Janice E. Carrillo & Cheryl Gaimon, 2004. "Managing Knowledge-Based Resource Capabilities Under Uncertainty," Management Science, INFORMS, vol. 50(11), pages 1504-1518, November.
    6. Beasley, J. E., 2003. "Allocating fixed costs and resources via data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 147(1), pages 198-216, May.
    7. Antreas D. Athanassopoulos, 1998. "Decision Support for Target-Based Resource Allocation of Public Services in Multiunit and Multilevel Systems," Management Science, INFORMS, vol. 44(2), pages 173-187, February.
    8. Cheryl Gaimon, 1997. "Planning Information Technology--Knowledge Worker Systems," Management Science, INFORMS, vol. 43(9), pages 1308-1328, September.
    9. Boaz Golany & Eran Tamir, 1995. "Evaluating Efficiency-Effectiveness-Equality Trade-Offs: A Data Envelopment Analysis Approach," Management Science, INFORMS, vol. 41(7), pages 1172-1184, July.
    10. Wallace J. Hopp & Eylem Tekin & Mark P. Van Oyen, 2004. "Benefits of Skill Chaining in Serial Production Lines with Cross-Trained Workers," Management Science, INFORMS, vol. 50(1), pages 83-98, January.
    11. Gerard M. Campbell, 1999. "Cross-Utilization of Workers Whose Capabilities Differ," Management Science, INFORMS, vol. 45(5), pages 722-732, May.
    12. Guillaume Roels & Uday S. Karmarkar & Scott Carr, 2010. "Contracting for Collaborative Services," Management Science, INFORMS, vol. 56(5), pages 849-863, May.
    13. Pekka Korhonen & Mikko Syrjänen, 2004. "Resource Allocation Based on Efficiency Analysis," Management Science, INFORMS, vol. 50(8), pages 1134-1144, August.
    14. Bordoloi, Sanjeev K. & Matsuo, Hirofumi, 2001. "Human resource planning in knowledge-intensive operations: A model for learning with stochastic turnover," European Journal of Operational Research, Elsevier, vol. 130(1), pages 169-189, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Ding & Pingyu Jiang & Mei Zheng, 0. "Environmental and economic sustainability-aware resource service scheduling for industrial product service systems," Journal of Intelligent Manufacturing, Springer, vol. 0, pages 1-14.
    2. Guillaume Roels, 2014. "Optimal Design of Coproductive Services: Interaction and Work Allocation," Manufacturing & Service Operations Management, INFORMS, vol. 16(4), pages 578-594, October.
    3. Kai Ding & Pingyu Jiang & Mei Zheng, 2017. "Environmental and economic sustainability-aware resource service scheduling for industrial product service systems," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1303-1316, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingying Shao & Gongbing Bi & Feng Yang & Qiong Xia, 2018. "Resource allocation for branch network system with considering heterogeneity based on DEA method," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 1005-1025, December.
    2. Akram Dehnokhalaji & Mojtaba Ghiyasi & Pekka Korhonen, 2017. "Resource allocation based on cost efficiency," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1279-1289, October.
    3. C. Vaz & A. Camanho & R. Guimarães, 2010. "The assessment of retailing efficiency using Network Data Envelopment Analysis," Annals of Operations Research, Springer, vol. 173(1), pages 5-24, January.
    4. Lorenzo Castelli & Raffaele Pesenti & Walter Ukovich, 2010. "A classification of DEA models when the internal structure of the Decision Making Units is considered," Annals of Operations Research, Springer, vol. 173(1), pages 207-235, January.
    5. Jie Wu & Jun-Fei Chu & Liang Liang, 2016. "Target setting and allocation of carbon emissions abatement based on DEA and closest target: an application to 20 APEC economies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 279-296, November.
    6. Chien-Ming Chen & Joe Zhu, 2011. "Efficient Resource Allocation via Efficiency Bootstraps: An Application to R&D Project Budgeting," Operations Research, INFORMS, vol. 59(3), pages 729-741, June.
    7. Du, Juan & Cook, Wade D. & Liang, Liang & Zhu, Joe, 2014. "Fixed cost and resource allocation based on DEA cross-efficiency," European Journal of Operational Research, Elsevier, vol. 235(1), pages 206-214.
    8. Nasim Nasrabadi & Akram Dehnokhalaji & Narsis Kiani & Pekka Korhonen & Jyrki Wallenius, 2012. "Resource allocation for performance improvement," Annals of Operations Research, Springer, vol. 196(1), pages 459-468, July.
    9. Lei Fang & C-Q Zhang, 2008. "Resource allocation based on the DEA model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1136-1141, August.
    10. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.
    11. Jie Wu & Qingyuan Zhu & Wade D Cook & Joe Zhu, 2016. "Best cooperative partner selection and input resource reallocation using DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(9), pages 1221-1237, September.
    12. Ane Elixabete Ripoll-Zarraga & Sebastián Lozano, 2020. "A centralised DEA approach to resource reallocation in Spanish airports," Annals of Operations Research, Springer, vol. 288(2), pages 701-732, May.
    13. Ang, Sheng & Liu, Pei & Yang, Feng, 2020. "Intra-Organizational and inter-organizational resource allocation in two-stage network systems," Omega, Elsevier, vol. 91(C).
    14. S Lozano & G Villa, 2010. "DEA-based pre-merger planning tool," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(10), pages 1485-1497, October.
    15. HOSSEINZADEH LOTFI, Farhad & HATAMI-MARBINI, Adel & AGRELL, Per & GHOLAMI, Kobra, 2013. "Centralized resource reduction and target setting under DEA control," LIDAM Discussion Papers CORE 2013005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Jiasen Sun & Yelin Fu & Xiang Ji & Ray Y. Zhong, 2017. "Allocation of emission permits using DEA-game-theoretic model," Operational Research, Springer, vol. 17(3), pages 867-884, October.
    17. Chih-Ching Yang, 2017. "Measuring health indicators and allocating health resources: a DEA-based approach," Health Care Management Science, Springer, vol. 20(3), pages 365-378, September.
    18. Ray, Subhash, 2016. "Cost efficiency in an Indian bank branch network: A centralized resource allocation model," Omega, Elsevier, vol. 65(C), pages 69-81.
    19. repec:gam:jsusta:v:8:y:2015:i:1:p:28:d:61444 is not listed on IDEAS
    20. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    21. Adel Hatami-Marbini & Zahra Ghelej Beigi & Hirofumi Fukuyama & Kobra Gholami, 2015. "Modeling Centralized Resources Allocation and Target Setting in Imprecise Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1189-1213, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:217:y:2012:i:2:p:439-447. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.