IDEAS home Printed from
   My bibliography  Save this article

Nonconvex piecewise linear knapsack problems


  • Kameshwaran, S.
  • Narahari, Y.


This paper considers the minimization version of a class of nonconvex knapsack problems with piecewise linear cost structure. The items to be included in the knapsack have a divisible quantity and a cost function. An item can be included partially in the given quantity range and the cost is a nonconvex piecewise linear function of quantity. Given a demand, the optimization problem is to choose an optimal quantity for each item such that the demand is satisfied and the total cost is minimized. This problem and its close variants are encountered in manufacturing planning, supply chain design, volume discount procurement auctions, and many other contemporary applications. Two separate mixed integer linear programming formulations of this problem are proposed and are compared with existing formulations. Motivated by different scenarios in which the problem is useful, the following algorithms are developed: (1) a fast polynomial time, near-optimal heuristic using convex envelopes; (2) exact pseudo-polynomial time dynamic programming algorithms; (3) a 2-approximation algorithm; and (4) a fully polynomial time approximation scheme. A comprehensive test suite is developed to generate representative problem instances with different characteristics. Extensive computational experiments show that the proposed formulations and algorithms are faster than the existing techniques.

Suggested Citation

  • Kameshwaran, S. & Narahari, Y., 2009. "Nonconvex piecewise linear knapsack problems," European Journal of Operational Research, Elsevier, vol. 192(1), pages 56-68, January.
  • Handle: RePEc:eee:ejores:v:192:y:2009:i:1:p:56-68

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Paul H. Zipkin, 1980. "Simple Ranking Methods for Allocation of One Resource," Management Science, INFORMS, vol. 26(1), pages 34-43, January.
    2. Kameshwaran, S. & Narahari, Y. & Rosa, Charles H. & Kulkarni, Devadatta M. & Tew, Jeffrey D., 2007. "Multiattribute electronic procurement using goal programming," European Journal of Operational Research, Elsevier, vol. 179(2), pages 518-536, June.
    3. Dudzinski, Krzysztof & Walukiewicz, Stanislaw, 1987. "Exact methods for the knapsack problem and its generalizations," European Journal of Operational Research, Elsevier, vol. 28(1), pages 3-21, January.
    4. Bretthauer, Kurt M. & Shetty, Bala, 2002. "The nonlinear knapsack problem - algorithms and applications," European Journal of Operational Research, Elsevier, vol. 138(3), pages 459-472, May.
    5. Keely L. Croxton & Bernard Gendron & Thomas L. Magnanti, 2003. "A Comparison of Mixed-Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems," Management Science, INFORMS, vol. 49(9), pages 1268-1273, September.
    6. Gabriel R. Bitran & Arnoldo C. Hax, 1981. "Disaggregation and Resource Allocation Using Convex Knapsack Problems with Bounded Variables," Management Science, INFORMS, vol. 27(4), pages 431-441, April.
    7. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    2. Borodin, Valeria & Dolgui, Alexandre & Hnaien, Faicel & Labadie, Nacima, 2016. "Component replenishment planning for a single-level assembly system under random lead times: A chance constrained programming approach," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 79-86.
    3. Hu, Qian & Lim, Andrew & Zhu, Wenbin, 2015. "The two-dimensional vector packing problem with piecewise linear cost function," Omega, Elsevier, vol. 50(C), pages 43-53.
    4. Srivastava, Vaibhav & Bullo, Francesco, 2014. "Knapsack problems with sigmoid utilities: Approximation algorithms via hybrid optimization," European Journal of Operational Research, Elsevier, vol. 236(2), pages 488-498.
    5. Ram Kumar P N, 2013. "On Modeling The Step Fixed-Charge Transportation Problem," Working papers 134, Indian Institute of Management Kozhikode.
    6. Wang, Kai & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2017. "Cruise service planning considering berth availability and decreasing marginal profit," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 1-18.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:192:y:2009:i:1:p:56-68. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.