IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i7p1097-d1621731.html
   My bibliography  Save this article

Solution Methods for the Multiple-Choice Knapsack Problem and Their Applications

Author

Listed:
  • Tibor Szkaliczki

    (HUN-REN Institute for Computer Science and Control, 1111 Budapest, Hungary)

Abstract

The Knapsack Problem belongs to the best-studied classical problems in combinatorial optimization. The Multiple-choice Knapsack Problem (MCKP) represents a generalization of the problem, with various application fields such as industry, transportation, telecommunication, national defense, bioinformatics, finance, and life. We found a lack of survey papers on MCKP. This paper overviews MCKP and presents its variants, solution methods, and applications. Traditional operational research methods solving the knapsack problem, such as dynamic programming, greedy heuristics, and branch-and-bound algorithms, can be adapted to MCKP. Only a few algorithms appear to have solved the problem in recent years. We found various related problems during the literature study and explored the broad spectrum of application areas. We intend to inspire research into MCKP algorithms and motivate experts from different domains to apply MCKP.

Suggested Citation

  • Tibor Szkaliczki, 2025. "Solution Methods for the Multiple-Choice Knapsack Problem and Their Applications," Mathematics, MDPI, vol. 13(7), pages 1-35, March.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1097-:d:1621731
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/7/1097/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/7/1097/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. C. Gilmore & R. E. Gomory, 1966. "The Theory and Computation of Knapsack Functions," Operations Research, INFORMS, vol. 14(6), pages 1045-1074, December.
    2. Dudzinski, Krzysztof & Walukiewicz, Stanislaw, 1987. "Exact methods for the knapsack problem and its generalizations," European Journal of Operational Research, Elsevier, vol. 28(1), pages 3-21, January.
    3. Xue Bai, 2012. "A Mathematical Framework for Data Quality Management in Enterprise Systems," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 648-664, November.
    4. Agostinho Agra & Cristina Requejo & Eulália Santos, 2016. "Implicit cover inequalities," Journal of Combinatorial Optimization, Springer, vol. 31(3), pages 1111-1129, April.
    5. Yogesh K. Agarwal, 2002. "Design of Capacitated Multicommodity Networks with Multiple Facilities," Operations Research, INFORMS, vol. 50(2), pages 333-344, April.
    6. Prabhakant Sinha & Andris A. Zoltners, 1979. "The Multiple-Choice Knapsack Problem," Operations Research, INFORMS, vol. 27(3), pages 503-515, June.
    7. Hugh Everett, 1963. "Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources," Operations Research, INFORMS, vol. 11(3), pages 399-417, June.
    8. Pisinger, David, 1995. "A minimal algorithm for the multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 83(2), pages 394-410, June.
    9. Coniglio, Stefano & Furini, Fabio & San Segundo, Pablo, 2021. "A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts," European Journal of Operational Research, Elsevier, vol. 289(2), pages 435-455.
    10. Alberto Ceselli & Giovanni Righini, 2006. "A Branch-and-Price Algorithm for the Multilevel Generalized Assignment Problem," Operations Research, INFORMS, vol. 54(6), pages 1172-1184, December.
    11. Yongchang Su & Xinran Li, 2024. "Treatment effect quantiles in stratified randomized experiments and matched observational studies," Biometrika, Biometrika Trust, vol. 111(1), pages 235-254.
    12. Martello, Silvano & Toth, Paolo, 1995. "A note on exact algorithms for the bottleneck generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 83(3), pages 711-712, June.
    13. Bretthauer, Kurt M. & Shetty, Bala, 2002. "The nonlinear knapsack problem - algorithms and applications," European Journal of Operational Research, Elsevier, vol. 138(3), pages 459-472, May.
    14. Nauss, Robert M., 1978. "The 0-1 knapsack problem with multiple choice constraints," European Journal of Operational Research, Elsevier, vol. 2(2), pages 125-131, March.
    15. Tsesmetzis, Dimitrios & Roussaki, Ioanna & Sykas, Efstathios, 2008. "QoS-aware service evaluation and selection," European Journal of Operational Research, Elsevier, vol. 191(3), pages 1101-1112, December.
    16. Martello, Silvano & Toth, Paolo, 1995. "The bottleneck generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 83(3), pages 621-638, June.
    17. Madjid Tavana & Kaveh Khalili-Damghani & Amir-Reza Abtahi, 2013. "A fuzzy multidimensional multiple-choice knapsack model for project portfolio selection using an evolutionary algorithm," Annals of Operations Research, Springer, vol. 206(1), pages 449-483, July.
    18. Pisinger, David, 2001. "Budgeting with bounded multiple-choice constraints," European Journal of Operational Research, Elsevier, vol. 129(3), pages 471-480, March.
    19. Stéphane Dauzère-Pérès & Michael Hassoun & Alejandro Sendon, 2016. "Allocating metrology capacity to multiple heterogeneous machines," International Journal of Production Research, Taylor & Francis Journals, vol. 54(20), pages 6082-6091, October.
    20. N. Samphaiboon & Y. Yamada, 2000. "Heuristic and Exact Algorithms for the Precedence-Constrained Knapsack Problem," Journal of Optimization Theory and Applications, Springer, vol. 105(3), pages 659-676, June.
    21. Kameshwaran, S. & Narahari, Y., 2009. "Nonconvex piecewise linear knapsack problems," European Journal of Operational Research, Elsevier, vol. 192(1), pages 56-68, January.
    22. George Kozanidis, 2009. "Solving the linear multiple choice knapsack problem with two objectives: profit and equity," Computational Optimization and Applications, Springer, vol. 43(2), pages 261-294, June.
    23. Ewa M. Bednarczuk & Janusz Miroforidis & Przemysław Pyzel, 2018. "A multi-criteria approach to approximate solution of multiple-choice knapsack problem," Computational Optimization and Applications, Springer, vol. 70(3), pages 889-910, July.
    24. Zhu, Xiaoyan & Wilhelm, Wilbert E., 2007. "Three-stage approaches for optimizing some variations of the resource constrained shortest-path sub-problem in a column generation context," European Journal of Operational Research, Elsevier, vol. 183(2), pages 564-577, December.
    25. András Prékopa & Merve Unuvar, 2015. "Single Commodity Stochastic Network Design Under Probabilistic Constraint with Discrete Random Variables," Operations Research, INFORMS, vol. 63(6), pages 1512-1527, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewa M. Bednarczuk & Janusz Miroforidis & Przemysław Pyzel, 2018. "A multi-criteria approach to approximate solution of multiple-choice knapsack problem," Computational Optimization and Applications, Springer, vol. 70(3), pages 889-910, July.
    2. Zhong, Tao & Young, Rhonda, 2010. "Multiple Choice Knapsack Problem: Example of planning choice in transportation," Evaluation and Program Planning, Elsevier, vol. 33(2), pages 128-137, May.
    3. Drexl, Andreas & Jørnsten, Kurt, 2007. "Pricing the multiple-choice nested knapsack problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 626, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    4. Boysen, Nils & Fliedner, Malte, 2008. "A versatile algorithm for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 39-56, January.
    5. Tue R. L. Christensen & Kim Allan Andersen & Andreas Klose, 2013. "Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming," Transportation Science, INFORMS, vol. 47(3), pages 428-438, August.
    6. Dauzère-Pérès, Stéphane & Hassoun, Michael, 2020. "On the importance of variability when managing metrology capacity," European Journal of Operational Research, Elsevier, vol. 282(1), pages 267-276.
    7. Kameshwaran, S. & Narahari, Y., 2009. "Nonconvex piecewise linear knapsack problems," European Journal of Operational Research, Elsevier, vol. 192(1), pages 56-68, January.
    8. Zhu, Xiaoyan & Wilhelm, Wilbert E., 2007. "Three-stage approaches for optimizing some variations of the resource constrained shortest-path sub-problem in a column generation context," European Journal of Operational Research, Elsevier, vol. 183(2), pages 564-577, December.
    9. Abdelkader Sbihi, 2007. "A best first search exact algorithm for the Multiple-choice Multidimensional Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 13(4), pages 337-351, May.
    10. Joseph B. Mazzola & Alan W. Neebe, 2012. "A generalized assignment model for dynamic supply chain capacity planning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(6), pages 470-485, September.
    11. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    12. Mohammadivojdan, Roshanak & Geunes, Joseph, 2018. "The newsvendor problem with capacitated suppliers and quantity discounts," European Journal of Operational Research, Elsevier, vol. 271(1), pages 109-119.
    13. Degraeve, Z. & Jans, R.F., 2003. "Improved Lower Bounds For The Capacitated Lot Sizing Problem With Set Up Times," ERIM Report Series Research in Management ERS-2003-026-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    14. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Post-Print halshs-03322716, HAL.
    15. M Hifi & M Michrafy, 2006. "A reactive local search-based algorithm for the disjunctively constrained knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 718-726, June.
    16. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    17. Yuji Nakagawa & Ross J. W. James & César Rego & Chanaka Edirisinghe, 2014. "Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models," Management Science, INFORMS, vol. 60(3), pages 695-707, March.
    18. Wilbaut, Christophe & Todosijevic, Raca & Hanafi, Saïd & Fréville, Arnaud, 2023. "Heuristic and exact reduction procedures to solve the discounted 0–1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 304(3), pages 901-911.
    19. Edward Y H Lin & Chung-Min Wu, 2004. "The multiple-choice multi-period knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 187-197, February.
    20. Andonov, R. & Poirriez, V. & Rajopadhye, S., 2000. "Unbounded knapsack problem: Dynamic programming revisited," European Journal of Operational Research, Elsevier, vol. 123(2), pages 394-407, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1097-:d:1621731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.