IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v245y2015i3p645-655.html
   My bibliography  Save this article

A branch-cut-and-price algorithm for the piecewise linear transportation problem

Author

Listed:
  • Christensen, Tue R.L.
  • Labbé, Martine

Abstract

In this paper we present an exact solution method for the transportation problem with piecewise linear costs. This problem is fundamental within supply chain management and is a straightforward extension of the fixed-charge transportation problem. We consider two Dantzig–Wolfe reformulations and investigate their relative strength with respect to the linear programming (LP) relaxation, both theoretical and practical, through tests on a number of instances. Based on one of the proposed formulations we derive an exact method by branching and adding generalized upper bound constraints from violated cover inequalities. The proposed solution method is tested on a set of randomly generated instances and compares favorably to solving the model using a standard formulation solved by a state-of-the-art commercial solver.

Suggested Citation

  • Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
  • Handle: RePEc:eee:ejores:v:245:y:2015:i:3:p:645-655
    DOI: 10.1016/j.ejor.2015.03.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715002611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.03.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keely L. Croxton & Bernard Gendron & Thomas L. Magnanti, 2003. "Models and Methods for Merge-in-Transit Operations," Transportation Science, INFORMS, vol. 37(1), pages 1-22, February.
    2. Sophie D. Lapierre & Angel B. Ruiz & Patrick Soriano, 2004. "Designing Distribution Networks: Formulations and Solution Heuristic," Transportation Science, INFORMS, vol. 38(2), pages 174-187, May.
    3. Zonghao Gu & George L. Nemhauser & Martin W. P. Savelsbergh, 1998. "Lifted Cover Inequalities for 0-1 Integer Programs: Computation," INFORMS Journal on Computing, INFORMS, vol. 10(4), pages 427-437, November.
    4. Keely L. Croxton & Bernard Gendron & Thomas L. Magnanti, 2003. "A Comparison of Mixed-Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems," Management Science, INFORMS, vol. 49(9), pages 1268-1273, September.
    5. Benchimol, Pascal & Desaulniers, Guy & Desrosiers, Jacques, 2012. "Stabilized dynamic constraint aggregation for solving set partitioning problems," European Journal of Operational Research, Elsevier, vol. 223(2), pages 360-371.
    6. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
    7. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    8. Pisinger, David, 1995. "A minimal algorithm for the multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 83(2), pages 394-410, June.
    9. Kameshwaran, S. & Narahari, Y., 2009. "Nonconvex piecewise linear knapsack problems," European Journal of Operational Research, Elsevier, vol. 192(1), pages 56-68, January.
    10. VANDERBECK, François & WOLSEY, Laurence A., 2010. "Reformulation and decomposition of integer programs," LIDAM Reprints CORE 2188, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Gondzio, Jacek & González-Brevis, Pablo & Munari, Pedro, 2013. "New developments in the primal–dual column generation technique," European Journal of Operational Research, Elsevier, vol. 224(1), pages 41-51.
    12. Ahmet B. Keha & Ismael R. de Farias & George L. Nemhauser, 2006. "A Branch-and-Cut Algorithm Without Binary Variables for Nonconvex Piecewise Linear Optimization," Operations Research, INFORMS, vol. 54(5), pages 847-858, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Feng & Shiwei He & Xuchao Chen & Guangye Li, 2021. "Mitigating the vulnerability of an air-high-speed railway transportation network: From the perspective of predisruption response," Journal of Risk and Reliability, , vol. 235(3), pages 474-490, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tue R. L. Christensen & Kim Allan Andersen & Andreas Klose, 2013. "Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming," Transportation Science, INFORMS, vol. 47(3), pages 428-438, August.
    2. Archetti, Claudia & Bertazzi, Luca & Grazia Speranza, M., 2014. "Polynomial cases of the economic lot sizing problem with cost discounts," European Journal of Operational Research, Elsevier, vol. 237(2), pages 519-527.
    3. Ram Kumar P N, 2013. "On Modeling The Step Fixed-Charge Transportation Problem," Working papers 134, Indian Institute of Management Kozhikode.
    4. Xiaolin Huang & Jun Xu & Shuning Wang, 2012. "Exact Penalty and Optimality Condition for Nonseparable Continuous Piecewise Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 145-164, October.
    5. Hu, Qian & Lim, Andrew & Zhu, Wenbin, 2015. "The two-dimensional vector packing problem with piecewise linear cost function," Omega, Elsevier, vol. 50(C), pages 43-53.
    6. Pedro Munari & Alfredo Moreno & Jonathan De La Vega & Douglas Alem & Jacek Gondzio & Reinaldo Morabito, 2019. "The Robust Vehicle Routing Problem with Time Windows: Compact Formulation and Branch-Price-and-Cut Method," Transportation Science, INFORMS, vol. 53(4), pages 1043-1066, July.
    7. Rigo, Cezar Antônio & Seman, Laio Oriel & Camponogara, Eduardo & Morsch Filho, Edemar & Bezerra, Eduardo Augusto & Munari, Pedro, 2022. "A branch-and-price algorithm for nanosatellite task scheduling to improve mission quality-of-service," European Journal of Operational Research, Elsevier, vol. 303(1), pages 168-183.
    8. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
    9. Codas, Andrés & Camponogara, Eduardo, 2012. "Mixed-integer linear optimization for optimal lift-gas allocation with well-separator routing," European Journal of Operational Research, Elsevier, vol. 217(1), pages 222-231.
    10. Hua, Hao & Hovestadt, Ludger & Tang, Peng & Li, Biao, 2019. "Integer programming for urban design," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1125-1137.
    11. Pedro Munari & Martin Savelsbergh, 2020. "A Column Generation-Based Heuristic for the Split Delivery Vehicle Routing Problem with Time Windows," SN Operations Research Forum, Springer, vol. 1(4), pages 1-24, December.
    12. Daniel Porumbel & François Clautiaux, 2017. "Constraint Aggregation in Column Generation Models for Resource-Constrained Covering Problems," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 170-184, February.
    13. Bjarne Grimstad & Brage R. Knudsen, 2020. "Mathematical programming formulations for piecewise polynomial functions," Journal of Global Optimization, Springer, vol. 77(3), pages 455-486, July.
    14. Steffen Rebennack, 2016. "Computing tight bounds via piecewise linear functions through the example of circle cutting problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 3-57, August.
    15. Said Dabia & Stefan Ropke & Tom van Woensel, 2019. "Cover Inequalities for a Vehicle Routing Problem with Time Windows and Shifts," Transportation Science, INFORMS, vol. 53(5), pages 1354-1371, September.
    16. Nasini, Stefano & Labbé, Martine & Brotcorne, Luce, 2022. "Multi-market portfolio optimization with conditional value at risk," European Journal of Operational Research, Elsevier, vol. 300(1), pages 350-365.
    17. Steffen Rebennack & Vitaliy Krasko, 2020. "Piecewise Linear Function Fitting via Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 507-530, April.
    18. Lingxun Kong & Christos T. Maravelias, 2020. "On the Derivation of Continuous Piecewise Linear Approximating Functions," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 531-546, July.
    19. Alfandari, Laurent & Plateau, Agnès & Scheplerc, Xavier, 2014. "A Branch-and-Price-and-Cut Approach for Sustainable Crop Rotation Planning," ESSEC Working Papers WP1408, ESSEC Research Center, ESSEC Business School.
    20. Silva, Thiago Lima & Camponogara, Eduardo, 2014. "A computational analysis of multidimensional piecewise-linear models with applications to oil production optimization," European Journal of Operational Research, Elsevier, vol. 232(3), pages 630-642.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:245:y:2015:i:3:p:645-655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.