IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v50y2003i7p770-792.html
   My bibliography  Save this article

A specially structured nonlinear integer resource allocation problem

Author

Listed:
  • Kurt M. Bretthauer
  • Bala Shetty
  • Siddhartha Syam

Abstract

We present an algorithm for solving a specially structured nonlinear integer resource allocation problem. This problem was motivated by a capacity planning study done at a large Health Maintenance Organization in Texas. Specifically, we focus on a class of nonlinear resource allocation problems that involve the minimization of a convex function over one general convex constraint, a set of block diagonal convex constraints, and bounds on the integer variables. The continuous variable problem is also considered. The continuous problem is solved by taking advantage of the structure of the Karush‐Kuhn‐Tucker (KKT) conditions. This method for solving the continuous problem is then incorporated in a branch and bound algorithm to solve the integer problem. Various reoptimization results, multiplier bounding results, and heuristics are used to improve the efficiency of the algorithms. We show how the algorithms can be extended to obtain a globally optimal solution to the nonconvex version of the problem. We further show that the methods can be applied to problems in production planning and financial optimization. Extensive computational testing of the algorithms is reported for a variety of applications on continuous problems with up to 1,000,000 variables and integer problems with up to 1000 variables. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 770–792, 2003.

Suggested Citation

  • Kurt M. Bretthauer & Bala Shetty & Siddhartha Syam, 2003. "A specially structured nonlinear integer resource allocation problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 770-792, October.
  • Handle: RePEc:wly:navres:v:50:y:2003:i:7:p:770-792
    DOI: 10.1002/nav.10089
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.10089
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.10089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dorit S. Hochbaum, 1994. "Lower and Upper Bounds for the Allocation Problem and Other Nonlinear Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 19(2), pages 390-409, May.
    2. Thomas L. Morin & Roy E. Marsten, 1976. "Branch-and-Bound Strategies for Dynamic Programming," Operations Research, INFORMS, vol. 24(4), pages 611-627, August.
    3. Omprakash K. Gupta & A. Ravindran, 1985. "Branch and Bound Experiments in Convex Nonlinear Integer Programming," Management Science, INFORMS, vol. 31(12), pages 1533-1546, December.
    4. Kurt M. Bretthauer & Bala Shetty & Siddhartha Syam, 1995. "A Branch and Bound Algorithm for Integer Quadratic Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 7(1), pages 109-116, February.
    5. Muralidharan S. Kodialam & Hanan Luss, 1998. "Algorithms for Separable Nonlinear Resource Allocation Problems," Operations Research, INFORMS, vol. 46(2), pages 272-284, April.
    6. Stuart Smith & Leon Lasdon, 1992. "Solving Large Sparse Nonlinear Programs Using GRG," INFORMS Journal on Computing, INFORMS, vol. 4(1), pages 2-15, February.
    7. Mary W. Cooper, 1980. "The use of dynamic programming methodology for the solution of a class of nonlinear programming problems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 27(1), pages 89-95, March.
    8. Satoru Fujishige & Naoki Katoh & Tetsuo Ichimori, 1988. "The Fair Resource Allocation Problem with Submodular Constraints," Mathematics of Operations Research, INFORMS, vol. 13(1), pages 164-173, February.
    9. Kurt M. Bretthauer & Bala Shetty, 1995. "The Nonlinear Resource Allocation Problem," Operations Research, INFORMS, vol. 43(4), pages 670-683, August.
    10. John M. Mulvey & Hercules Vladimirou, 1992. "Stochastic Network Programming for Financial Planning Problems," Management Science, INFORMS, vol. 38(11), pages 1642-1664, November.
    11. Gabriel R. Bitran & Devanath Tirupati, 1989. "Tradeoff Curves, Targeting and Balancing in Manufacturing Queueing Networks," Operations Research, INFORMS, vol. 37(4), pages 547-564, August.
    12. Gabriel R. Bitran & Arnoldo C. Hax, 1981. "Disaggregation and Resource Allocation Using Convex Knapsack Problems with Bounded Variables," Management Science, INFORMS, vol. 27(4), pages 431-441, April.
    13. Mary W. Cooper, 1981. "A Survey of Methods for Pure Nonlinear Integer Programming," Management Science, INFORMS, vol. 27(3), pages 353-361, March.
    14. Thomas L. Morin & Roy E. Marsten, 1976. "An Algorithm for Nonlinear Knapsack Problems," Management Science, INFORMS, vol. 22(10), pages 1147-1158, June.
    15. Kalman J. Cohen & Jerry A. Pogue, 1967. "An Empirical Evaluation of Alternative Portfolio-Selection Models," The Journal of Business, University of Chicago Press, vol. 40, pages 166-166.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    2. Bretthauer, Kurt M. & Shetty, Bala, 2002. "The nonlinear knapsack problem - algorithms and applications," European Journal of Operational Research, Elsevier, vol. 138(3), pages 459-472, May.
    3. Lee, Zu-Hsu & Deng, Shiming & Lin, Beixin & Yang, James G.S., 2010. "Decision model and analysis for investment interest expense deduction and allocation," European Journal of Operational Research, Elsevier, vol. 200(1), pages 268-280, January.
    4. Patriksson, Michael & Strömberg, Christoffer, 2015. "Algorithms for the continuous nonlinear resource allocation problem—New implementations and numerical studies," European Journal of Operational Research, Elsevier, vol. 243(3), pages 703-722.
    5. Zhang, Bin & Hua, Zhongsheng, 2008. "A unified method for a class of convex separable nonlinear knapsack problems," European Journal of Operational Research, Elsevier, vol. 191(1), pages 1-6, November.
    6. AgralI, Semra & Geunes, Joseph, 2009. "Solving knapsack problems with S-curve return functions," European Journal of Operational Research, Elsevier, vol. 193(2), pages 605-615, March.
    7. Bretthauer, Kurt M. & Ross, Anthony & Shetty, Bala, 1999. "Nonlinear integer programming for optimal allocation in stratified sampling," European Journal of Operational Research, Elsevier, vol. 116(3), pages 667-680, August.
    8. K. C. Kiwiel, 2008. "Variable Fixing Algorithms for the Continuous Quadratic Knapsack Problem," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 445-458, March.
    9. DePaolo, Concetta A. & Rader, David Jr., 2007. "A heuristic algorithm for a chance constrained stochastic program," European Journal of Operational Research, Elsevier, vol. 176(1), pages 27-45, January.
    10. De Waegenaere, A.M.B. & Wielhouwer, J.L., 2001. "A Partial Ranking Algorithm for Resource Allocation Problems," Other publications TiSEM 8b2e0185-36f9-43df-8a3d-d, Tilburg University, School of Economics and Management.
    11. De Waegenaere, A.M.B. & Wielhouwer, J.L., 2001. "A Partial Ranking Algorithm for Resource Allocation Problems," Discussion Paper 2001-40, Tilburg University, Center for Economic Research.
    12. Kameshwaran, S. & Narahari, Y., 2009. "Nonconvex piecewise linear knapsack problems," European Journal of Operational Research, Elsevier, vol. 192(1), pages 56-68, January.
    13. Hoto, R.S.V. & Matioli, L.C. & Santos, P.S.M., 2020. "A penalty algorithm for solving convex separable knapsack problems," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    14. Zhang, Jianzhong & Xu, Chengxian, 2010. "Inverse optimization for linearly constrained convex separable programming problems," European Journal of Operational Research, Elsevier, vol. 200(3), pages 671-679, February.
    15. Walter, Rico & Boysen, Nils & Scholl, Armin, 2013. "The discrete forward–reserve problem – Allocating space, selecting products, and area sizing in forward order picking," European Journal of Operational Research, Elsevier, vol. 229(3), pages 585-594.
    16. Yuji Nakagawa & Ross J. W. James & César Rego & Chanaka Edirisinghe, 2014. "Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models," Management Science, INFORMS, vol. 60(3), pages 695-707, March.
    17. Bretthauer, Kurt M. & Cote, Murray J., 1997. "Nonlinear programming for multiperiod capacity planning in a manufacturing system," European Journal of Operational Research, Elsevier, vol. 96(1), pages 167-179, January.
    18. Kurt M. Bretthauer, 2000. "Optimal service and arrival rates in Jackson queueing networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(1), pages 1-17, February.
    19. Harwin De Vries & Lisa E. Swinkels & Luk N. Van Wassenhove, 2021. "Site Visit Frequency Policies for Mobile Family Planning Services," Production and Operations Management, Production and Operations Management Society, vol. 30(12), pages 4522-4540, December.
    20. Leon Lasdon & Judith S. Liebman, 1998. "The Teachers' Forum: Teaching Nonlinear Programming Using Cooperative Active Learning," Interfaces, INFORMS, vol. 28(4), pages 119-132, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:50:y:2003:i:7:p:770-792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.