IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Model selection criteria in multivariate models with multiple structural changes

  • Kurozumi, Eiji
  • Tuvaandorj, Purevdorj

This paper considers the issue of selecting the number of regressors and the number of structural breaks in multivariate regression models in the possible presence of multiple structural changes. We develop a modified Akaike information criterion (AIC), a modified Mallows' Cp criterion and a modified Bayesian information criterion (BIC). The penalty terms in these criteria are shown to be different from the usual terms. We prove that the modified BIC consistently selects the regressors and the number of breaks whereas the modified AIC and the modified Cp criterion tend to overfit with positive probability. The finite sample performance of these criteria is investigated through Monte Carlo simulations and it turns out that our modification is successful in comparison to the classical model selection criteria and the sequential testing procedure robust to heteroskedasticity and autocorrelation.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304407611000820
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 164 (2011)
Issue (Month): 2 (October)
Pages: 218-238

as
in new window

Handle: RePEc:eee:econom:v:164:y:2011:i:2:p:218-238
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Bai, Jushan, 1999. "Likelihood ratio tests for multiple structural changes," Journal of Econometrics, Elsevier, vol. 91(2), pages 299-323, August.
  2. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-56, July.
  3. Bai, Jushan, 1997. "Estimating Multiple Breaks One at a Time," Econometric Theory, Cambridge University Press, vol. 13(03), pages 315-352, June.
  4. Jushan Bai, 1999. "Vector Autoregressive Models with Structural Changes in Regression Coefficients and in Variance-Covariance Matrices," CEMA Working Papers 24, China Economics and Management Academy, Central University of Finance and Economics, revised Oct 2000.
  5. Andrews, Donald W. K. & Lee, Inpyo & Ploberger, Werner, 1996. "Optimal changepoint tests for normal linear regression," Journal of Econometrics, Elsevier, vol. 70(1), pages 9-38, January.
  6. Perron, P. & Bai, J., 1995. "Estimating and Testing Linear Models with Multiple Structural Changes," Cahiers de recherche 9552, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  7. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
  8. Ninomiya, Yoshiyuki, 2005. "Information criterion for Gaussian change-point model," Statistics & Probability Letters, Elsevier, vol. 72(3), pages 237-247, May.
  9. Zhongjun Qu & Pierre Perron, 2007. "Estimating and Testing Structural Changes in Multivariate Regressions," Econometrica, Econometric Society, vol. 75(2), pages 459-502, 03.
  10. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
  11. Davis, Richard A. & Lee, Thomas C.M. & Rodriguez-Yam, Gabriel A., 2006. "Structural Break Estimation for Nonstationary Time Series Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 223-239, March.
  12. Yao, Yi-Ching, 1988. "Estimating the number of change-points via Schwarz' criterion," Statistics & Probability Letters, Elsevier, vol. 6(3), pages 181-189, February.
  13. Hansen, Bruce E., 2009. "Averaging Estimators For Regressions With A Possible Structural Break," Econometric Theory, Cambridge University Press, vol. 25(06), pages 1498-1514, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:164:y:2011:i:2:p:218-238. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.