IDEAS home Printed from
   My bibliography  Save this article

Information criterion for Gaussian change-point model


  • Ninomiya, Yoshiyuki


AIC-type information criterion is generally estimated by the bias-corrected maximum log-likelihood. In regular models, the bias can be estimated by p, where p is the number of parameters. The present paper considers the AIC-type information criterion for change-point models which are not regular, the bias of which will not be the same as for regular models. The bias is shown to depend on the expected maximum of a random walk with negative drift. Furthermore, it is shown that by using an approximation to a Brownian motion, the evaluated bias is given by 3m+pm (not m+pm), where m is the number of change-points and pm is the number of regular parameters, which differs from regular models.

Suggested Citation

  • Ninomiya, Yoshiyuki, 2005. "Information criterion for Gaussian change-point model," Statistics & Probability Letters, Elsevier, vol. 72(3), pages 237-247, May.
  • Handle: RePEc:eee:stapro:v:72:y:2005:i:3:p:237-247

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Yao, Yi-Ching, 1988. "Estimating the number of change-points via Schwarz' criterion," Statistics & Probability Letters, Elsevier, vol. 6(3), pages 181-189, February.
    2. Stryhn, Henrik, 1996. "The location of the maximum of asymmetric two-sided Brownian motion with triangular drift," Statistics & Probability Letters, Elsevier, vol. 29(3), pages 279-284, September.
    3. Lee, Chung-Bow, 1995. "Estimating the number of change points in a sequence of independent normal random variables," Statistics & Probability Letters, Elsevier, vol. 25(3), pages 241-248, November.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Yoshiyuki Ninomiya, 2015. "Change-point model selection via AIC," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 943-961, October.
    2. Shen, Gang, 2013. "On empirical likelihood inference of a change-point," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1662-1668.
    3. Neil Kellard & Denise Osborn & Jerry Coakley & Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2015. "Structural Break Inference Using Information Criteria in Models Estimated by Two-Stage Least Squares," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 741-762, September.
    4. Kurozumi, Eiji & Tuvaandorj, Purevdorj, 2011. "Model selection criteria in multivariate models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 164(2), pages 218-238, October.
    5. repec:bla:obuest:v:79:y:2017:i:2:p:145-164 is not listed on IDEAS
    6. Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2013. "Inference on Structural Breaks using Information Criteria," Manchester School, University of Manchester, vol. 81, pages 54-81, October.
    7. Yoshiyuki Ninomiya & Atsushi Yoshimoto, 2008. "Statistical Method for Detecting Structural Change in the Growth Process," Biometrics, The International Biometric Society, vol. 64(1), pages 46-53, March.
    8. Pan, Jianmin & Chen, Jiahua, 2006. "Application of modified information criterion to multiple change point problems," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2221-2241, November.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:72:y:2005:i:3:p:237-247. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.