IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v28y2013i6p2585-2598.html
   My bibliography  Save this article

Non-monotonic penalizing for the number of structural breaks

Author

Listed:
  • Erhard Reschenhofer
  • David Preinerstorfer
  • Lukas Steinberger

Abstract

This paper first reduces the problem of detecting structural breaks in a random walk to that of finding the best subset of explanatory variables in a regression model and then tailors various subset selection criteria to this specific problem. Of particular interest are those new criteria, which are obtained by means of simulation using the efficient algorithm of Bai and Perron (J Appl Econom 18:1–22, 2003 ). Unlike conventional variable selection methods, which penalize new variables entering a model either in the same way (e.g., AIC and BIC) or milder (e.g., MRIC and $$\mathrm {FPE}_\mathrm{{sub}}$$ ) than already included variables, they do not follow any monotonic penalizing scheme. In general, their non-monotonicity is more pronounced in the case of fat tails. The characteristics of the different criteria are illustrated using bootstrap samples from the Nile data set. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Erhard Reschenhofer & David Preinerstorfer & Lukas Steinberger, 2013. "Non-monotonic penalizing for the number of structural breaks," Computational Statistics, Springer, vol. 28(6), pages 2585-2598, December.
  • Handle: RePEc:spr:compst:v:28:y:2013:i:6:p:2585-2598
    DOI: 10.1007/s00180-013-0419-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-013-0419-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-013-0419-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perron, Pierre, 2020. "L'estimation de modèles avec changements structurels multiples," L'Actualité Economique, Société Canadienne de Science Economique, vol. 96(4), pages 789-837, Décembre.
    2. Hong, Han & Preston, Bruce, 2012. "Bayesian averaging, prediction and nonnested model selection," Journal of Econometrics, Elsevier, vol. 167(2), pages 358-369.
    3. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    4. Ninomiya, Yoshiyuki, 2005. "Information criterion for Gaussian change-point model," Statistics & Probability Letters, Elsevier, vol. 72(3), pages 237-247, May.
    5. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    6. Hirotugu Akaike, 1969. "Fitting autoregressive models for prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 243-247, December.
    7. Reschenhofer, Erhard, 1996. "Approximating the Bayes factor," Statistics & Probability Letters, Elsevier, vol. 30(3), pages 241-245, October.
    8. Sin, Chor-Yiu & White, Halbert, 1996. "Information criteria for selecting possibly misspecified parametric models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 207-225.
    9. Zeileis, Achim & Kleiber, Christian & Kramer, Walter & Hornik, Kurt, 2003. "Testing and dating of structural changes in practice," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 109-123, October.
    10. Yuhong Yang, 2005. "Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation," Biometrika, Biometrika Trust, vol. 92(4), pages 937-950, December.
    11. Corbae,Dean & Durlauf,Steven N. & Hansen,Bruce E. (ed.), 2006. "Econometric Theory and Practice," Cambridge Books, Cambridge University Press, number 9780521807234, November.
    12. Zeileis, Achim & Shah, Ajay & Patnaik, Ila, 2010. "Testing, monitoring, and dating structural changes in exchange rate regimes," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1696-1706, June.
    13. anonymous, 1968. "Letters to the Editor," Management Science, INFORMS, vol. 15(4), pages 132-136, December.
    14. Kabaila, Paul, 2002. "On Variable Selection In Linear Regression," Econometric Theory, Cambridge University Press, vol. 18(4), pages 913-925, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniela Jarušková, 2015. "Detecting non-simultaneous changes in means of vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 681-700, December.
    2. Marek Chudý & Erhard Reschenhofer, 2019. "Macroeconomic Forecasting with Factor-Augmented Adjusted Band Regression," Econometrics, MDPI, vol. 7(4), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    2. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    3. Neil Kellard & Denise Osborn & Jerry Coakley & Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2015. "Structural Break Inference Using Information Criteria in Models Estimated by Two-Stage Least Squares," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 741-762, September.
    4. Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2013. "Inference on Structural Breaks using Information Criteria," Manchester School, University of Manchester, vol. 81, pages 54-81, October.
    5. Kurozumi, Eiji & Tuvaandorj, Purevdorj, 2011. "Model selection criteria in multivariate models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 164(2), pages 218-238, October.
    6. Aurelio Fernández Bariviera & M. Belén Guercio & Lisana B. Martinez, 2014. "Informational Efficiency in Distressed Markets: The Case of European Corporate Bonds," The Economic and Social Review, Economic and Social Studies, vol. 45(3), pages 349-369.
    7. Dima, Bogdan & Dima, Ştefana Maria, 2017. "Mutual information and persistence in the stochastic volatility of market returns: An emergent market example," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 36-59.
    8. Chang, Bi-Juan & Hung, Mao-Wei, 2021. "Corporate debt and cash decisions: A nonlinear panel data analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 15-37.
    9. Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2017. "The asymptotic behaviour of the residual sum of squares in models with multiple break points," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 667-698, October.
    10. Guo, Zhichao & Feng, Yuanhua & Tan, Xiangyong, 2011. "Short- and long-term impact of remarkable economic events on the growth causes of China–Germany trade in agri-food products," Economic Modelling, Elsevier, vol. 28(6), pages 2359-2368.
    11. Fan, Ying & Xu, Jin-Hua, 2011. "What has driven oil prices since 2000? A structural change perspective," Energy Economics, Elsevier, vol. 33(6), pages 1082-1094.
    12. Mohitosh Kejriwal, 2020. "A Robust Sequential Procedure for Estimating the Number of Structural Changes in Persistence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(3), pages 669-685, June.
    13. James Nolan & Zoe Laulederkind, 2022. "Plane to See? Empirical Analysis of the 1999–2006 Air Cargo Cartel," Advances in Airline Economics, in: The International Air Cargo Industry, volume 9, pages 241-262, Emerald Group Publishing Limited.
    14. Jamel JOUINI & Mohamed BOUTAHAR, 2007. "wrong estimation of the true number of shifts in structural break models: Theoretical and numerical evidence," Economics Bulletin, AccessEcon, vol. 3(3), pages 1-10.
    15. Kejriwal, Mohitosh & Perron, Pierre, 2010. "Testing for Multiple Structural Changes in Cointegrated Regression Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 503-522.
    16. Joscha Beckmann & Ansgar Belke & Michael Kühl, 2009. "How Stable Are Monetary Models of the Dollar-Euro Exchange Rate?: A Time-Varying Coefficient Approach," Discussion Papers of DIW Berlin 944, DIW Berlin, German Institute for Economic Research.
    17. Addona Vittorio & Yates Philip A, 2010. "A Closer Look at the Relative Age Effect in the National Hockey League," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(4), pages 1-19, October.
    18. Jeffrey Frankel & Daniel Xie, 2010. "Estimation of De Facto Flexibility Parameter and Basket Weights in Evolving Exchange Rate Regimes," American Economic Review, American Economic Association, vol. 100(2), pages 568-572, May.
    19. Giorgio Canarella & Rangan Gupta & Stephen M. Miller & Stephen K. Pollard, 2019. "Unemployment rate hysteresis and the great recession: exploring the metropolitan evidence," Empirical Economics, Springer, vol. 56(1), pages 61-79, January.
    20. Tino Berger, 2011. "Estimating Europe’s natural rates," Empirical Economics, Springer, vol. 40(2), pages 521-536, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:28:y:2013:i:6:p:2585-2598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.