IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v28y2013i6p2585-2598.html
   My bibliography  Save this article

Non-monotonic penalizing for the number of structural breaks

Author

Listed:
  • Erhard Reschenhofer
  • David Preinerstorfer
  • Lukas Steinberger

Abstract

This paper first reduces the problem of detecting structural breaks in a random walk to that of finding the best subset of explanatory variables in a regression model and then tailors various subset selection criteria to this specific problem. Of particular interest are those new criteria, which are obtained by means of simulation using the efficient algorithm of Bai and Perron (J Appl Econom 18:1–22, 2003 ). Unlike conventional variable selection methods, which penalize new variables entering a model either in the same way (e.g., AIC and BIC) or milder (e.g., MRIC and $$\mathrm {FPE}_\mathrm{{sub}}$$ ) than already included variables, they do not follow any monotonic penalizing scheme. In general, their non-monotonicity is more pronounced in the case of fat tails. The characteristics of the different criteria are illustrated using bootstrap samples from the Nile data set. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Erhard Reschenhofer & David Preinerstorfer & Lukas Steinberger, 2013. "Non-monotonic penalizing for the number of structural breaks," Computational Statistics, Springer, vol. 28(6), pages 2585-2598, December.
  • Handle: RePEc:spr:compst:v:28:y:2013:i:6:p:2585-2598
    DOI: 10.1007/s00180-013-0419-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-013-0419-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-013-0419-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    2. Ninomiya, Yoshiyuki, 2005. "Information criterion for Gaussian change-point model," Statistics & Probability Letters, Elsevier, vol. 72(3), pages 237-247, May.
    3. Sin, Chor-Yiu & White, Halbert, 1996. "Information criteria for selecting possibly misspecified parametric models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 207-225.
    4. Zeileis, Achim & Kleiber, Christian & Kramer, Walter & Hornik, Kurt, 2003. "Testing and dating of structural changes in practice," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 109-123, October.
    5. Yuhong Yang, 2005. "Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation," Biometrika, Biometrika Trust, vol. 92(4), pages 937-950, December.
    6. Corbae,Dean & Durlauf,Steven N. & Hansen,Bruce E. (ed.), 2006. "Econometric Theory and Practice," Cambridge Books, Cambridge University Press, number 9780521807234, June.
    7. anonymous, 1968. "Letters to the Editor," Management Science, INFORMS, vol. 15(4), pages 132-136, December.
    8. Hong, Han & Preston, Bruce, 2012. "Bayesian averaging, prediction and nonnested model selection," Journal of Econometrics, Elsevier, vol. 167(2), pages 358-369.
    9. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    10. Hirotugu Akaike, 1969. "Fitting autoregressive models for prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 243-247, December.
    11. Zeileis, Achim & Shah, Ajay & Patnaik, Ila, 2010. "Testing, monitoring, and dating structural changes in exchange rate regimes," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1696-1706, June.
    12. Kabaila, Paul, 2002. "On Variable Selection In Linear Regression," Econometric Theory, Cambridge University Press, vol. 18(4), pages 913-925, August.
    13. Perron, Pierre, 2020. "L'estimation de modèles avec changements structurels multiples," L'Actualité Economique, Société Canadienne de Science Economique, vol. 96(4), pages 789-837, Décembre.
    14. Reschenhofer, Erhard, 1996. "Approximating the Bayes factor," Statistics & Probability Letters, Elsevier, vol. 30(3), pages 241-245, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Chudý & Erhard Reschenhofer, 2019. "Macroeconomic Forecasting with Factor-Augmented Adjusted Band Regression," Econometrics, MDPI, vol. 7(4), pages 1-14, December.
    2. Daniela Jarušková, 2015. "Detecting non-simultaneous changes in means of vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 681-700, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kurozumi, Eiji & Tuvaandorj, Purevdorj, 2011. "Model selection criteria in multivariate models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 164(2), pages 218-238, October.
    2. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    3. Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2013. "Inference on Structural Breaks using Information Criteria," Manchester School, University of Manchester, vol. 81, pages 54-81, October.
    4. Neil Kellard & Denise Osborn & Jerry Coakley & Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2015. "Structural Break Inference Using Information Criteria in Models Estimated by Two-Stage Least Squares," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 741-762, September.
    5. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    6. Aurelio Fernández Bariviera & M. Belén Guercio & Lisana B. Martinez, 2014. "Informational Efficiency in Distressed Markets: The Case of European Corporate Bonds," The Economic and Social Review, Economic and Social Studies, vol. 45(3), pages 349-369.
    7. Dima, Bogdan & Dima, Ştefana Maria, 2017. "Mutual information and persistence in the stochastic volatility of market returns: An emergent market example," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 36-59.
    8. Meng Xu & Avishai Ceder & Ziyou Gao & Wei Guan, 2010. "Mass transit systems of Beijing: governance evolution and analysis," Transportation, Springer, vol. 37(5), pages 709-729, September.
    9. Erdenebat Bataa & Denise R. Osborn & Marianne Sensier & Dick van Dijk, 2014. "Identifying Changes in Mean, Seasonality, Persistence and Volatility for G7 and Euro Area Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 360-388, June.
    10. Camilo Alberto Cárdenas-Hurtado & María Alejandra Hernández-Montes, 2019. "Understanding the Consumer Confidence Index in Colombia: A structural FAVAR analysis," Borradores de Economia 1063, Banco de la Republica de Colombia.
    11. Frijns, Bart & Indriawan, Ivan & Otsubo, Yoichi & Tourani-Rad, Alireza, 2019. "The cost of trading during Federal Funds Rate announcements: Evidence from cross-listed stocks," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 176-187.
    12. Chang, Bi-Juan & Hung, Mao-Wei, 2021. "Corporate debt and cash decisions: A nonlinear panel data analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 15-37.
    13. Stefan Pahl & Marcel P. Timmer, 2019. "Patterns of vertical specialisation in trade: long-run evidence for 91 countries," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 155(3), pages 459-486, August.
    14. Karsten Schweikert, 2022. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 83-104, January.
    15. Essahbi Essaadi & Jamel Jouini & Wajih Khallouli, 2009. "The Asian Crisis Contagion: A Dynamic Correlation Approach Analysis," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 56(2), pages 241-260, June.
    16. Altansukh, Gantungalag & Becker, Ralf & Bratsiotis, George J. & Osborn, Denise R., 2017. "What is the Globalisation of Inflation?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 74, pages 1-27.
    17. Jeffrey Frankel & Daniel Xie, 2010. "Estimation of De Facto Flexibility Parameter and Basket Weights in Evolving Exchange Rate Regimes," American Economic Review, American Economic Association, vol. 100(2), pages 568-572, May.
    18. Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2017. "The asymptotic behaviour of the residual sum of squares in models with multiple break points," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 667-698, October.
    19. Guo, Zhichao & Feng, Yuanhua & Tan, Xiangyong, 2011. "Short- and long-term impact of remarkable economic events on the growth causes of China–Germany trade in agri-food products," Economic Modelling, Elsevier, vol. 28(6), pages 2359-2368.
    20. Fan, Ying & Xu, Jin-Hua, 2011. "What has driven oil prices since 2000? A structural change perspective," Energy Economics, Elsevier, vol. 33(6), pages 1082-1094.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:28:y:2013:i:6:p:2585-2598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.