IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v25y2009i06p1498-1514_99.html
   My bibliography  Save this article

Averaging Estimators For Regressions With A Possible Structural Break

Author

Listed:
  • Hansen, Bruce E.

Abstract

This paper investigates selection and averaging of linear regressions with a possible structural break. Our main contribution is the construction of a Mallows criterion for the structural break model. We show that the correct penalty term is nonstandard and depends on unknown parameters, but it can be approximated by an average of limiting cases to yield a feasible penalty with good performance. Following Hansen (2007, Econometrica 75, 1175–1189) we recommend averaging the structural break estimates with the no-break estimates where the weight is selected to minimize the Mallows criterion. This estimator is simple to compute, as the weights are a simple function of the ratio of the penalty to the Andrews SupF test statistic.

Suggested Citation

  • Hansen, Bruce E., 2009. "Averaging Estimators For Regressions With A Possible Structural Break," Econometric Theory, Cambridge University Press, vol. 25(06), pages 1498-1514, December.
  • Handle: RePEc:cup:etheor:v:25:y:2009:i:06:p:1498-1514_99
    as

    Download full text from publisher

    File URL: http://journals.cambridge.org/abstract_S0266466609990235
    File Function: link to article abstract page
    Download Restriction: no

    References listed on IDEAS

    as
    1. Joon Y. Park & Peter C. B. Phillips, 2000. "Nonstationary Binary Choice," Econometrica, Econometric Society, vol. 68(5), pages 1249-1280, September.
    2. Phillips, Peter C.B., 2005. "Challenges of trending time series econometrics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(5), pages 401-416.
    3. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    4. Wang, Qiying & Phillips, Peter C.B., 2009. "Asymptotic Theory For Local Time Density Estimation And Nonparametric Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 25(03), pages 710-738, June.
    5. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339 Elsevier.
    6. Peter C. B. Phillips, 2001. "Descriptive econometrics for non-stationary time series with empirical illustrations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 389-413.
    7. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(03), pages 269-298, June.
    8. de Jong, Robert M., 2004. "Addendum To," Econometric Theory, Cambridge University Press, vol. 20(03), pages 627-635, June.
    9. P tscher, Benedikt M., 2004. "Nonlinear Functions And Convergence To Brownian Motion: Beyond The Continuous Mapping Theorem," Econometric Theory, Cambridge University Press, vol. 20(01), pages 1-22, February.
    10. Berkes, Istv n & Horv th, Lajos, 2006. "Convergence Of Integral Functionals Of Stochastic Processes," Econometric Theory, Cambridge University Press, vol. 22(02), pages 304-322, April.
    11. Emmanuel Guerre, 2004. "Design-Adaptive Pointwise Nonparametric Regression Estimation for Recurrent Markov Time Series," Working Papers 2004-22, Center for Research in Economics and Statistics.
    12. Peter C. B. Phillips, 1998. "New Tools for Understanding Spurious Regressions," Econometrica, Econometric Society, vol. 66(6), pages 1299-1326, November.
    13. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, number 8355, June.
    14. Phillips, P.C.B., 1986. "Understanding spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 33(3), pages 311-340, December.
    15. Yatchew,Adonis, 2003. "Semiparametric Regression for the Applied Econometrician," Cambridge Books, Cambridge University Press, number 9780521012263, March.
    16. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    17. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    18. Peter C.B. Phillips & Joon Y. Park, 1998. "Nonstationary Density Estimation and Kernel Autoregression," Cowles Foundation Discussion Papers 1181, Cowles Foundation for Research in Economics, Yale University.
    19. de Jong, Robert & Wang, Chien-Ho, 2005. "Further Results On The Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 21(02), pages 413-430, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Anwen, 2015. "Forecasting and model averaging with structural breaks," ISU General Staff Papers 201501010800005727, Iowa State University, Department of Economics.
    2. Koo, Bonsoo & Seo, Myung Hwan, 2015. "Structural-break models under mis-specification: Implications for forecasting," Journal of Econometrics, Elsevier, vol. 188(1), pages 166-181.
    3. Hansen, Bruce E., 2010. "Averaging estimators for autoregressions with a near unit root," Journal of Econometrics, Elsevier, vol. 158(1), pages 142-155, September.
    4. Gallegati, Marco & Ramsey, James B., 2013. "Structural change and phase variation: A re-examination of the q-model using wavelet exploratory analysis," Structural Change and Economic Dynamics, Elsevier, vol. 25(C), pages 60-73.
    5. Tom Boot & Andreas Pick, 2017. "A near optimal test for structural breaks when forecasting under square error loss," Tinbergen Institute Discussion Papers 17-039/III, Tinbergen Institute.
    6. Kurozumi, Eiji & Tuvaandorj, Purevdorj, 2011. "Model selection criteria in multivariate models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 164(2), pages 218-238, October.
    7. Liu, Chu-An, 2012. "A plug-in averaging estimator for regressions with heteroskedastic errors," MPRA Paper 41414, University Library of Munich, Germany.
    8. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    9. Boonsoo Koo & Myung Hwan Seo, 2013. "Structural-break models under mis-specification: implications for forecasting," Monash Econometrics and Business Statistics Working Papers 11/13, Monash University, Department of Econometrics and Business Statistics.
    10. Lu, Xun & Su, Liangjun, 2015. "Jackknife model averaging for quantile regressions," Journal of Econometrics, Elsevier, vol. 188(1), pages 40-58.
    11. Elena Andreou & Eric Ghysels & Constantinos Kourouyiannis, 2012. "Robust volatility forecasts in the presence of structural breaks," University of Cyprus Working Papers in Economics 08-2012, University of Cyprus Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:25:y:2009:i:06:p:1498-1514_99. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: http://journals.cambridge.org/jid_ECT .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.