IDEAS home Printed from https://ideas.repec.org/p/kan/wpaper/202409.html
   My bibliography  Save this paper

Stein-like Common Correlated Effects Estimation Under Structural Breaks

Author

Listed:
  • Shahnaz Parsaeian

    (Department of Economics, University of Kansas, Lawrence, KS 66045)

Abstract

This paper develops a Stein-like combined estimator for large heterogeneous panel data models under common structural breaks. The model allows for cross-sectional dependence through a general multifactor error structure. By utilizing the common correlated effects (CCE) estimation technique, we propose a Stein-like combined estimator of the CCE full-sample estimator (i.e., estimation using both the pre-break and post-break observations) and the CCE post-break estimator (i.e., estimation using only the post-break sample observations). The proposed Stein-like combined estimator benefits from exploiting the pre-break sample observations. We derive the optimal combination weight by minimizing the asymptotic risk. We show the superiority of the CCE Stein-like combined estimator over the CCE post-break estimator in terms of the asymptotic risk. Further, we establish the asymptotic properties of the CCE mean group Stein-like combined estimator. The finite sample performance of our proposed estimator is investigated using Monte Carlo experiments and an empirical application of predicting the output growth of industrialized countries.

Suggested Citation

  • Shahnaz Parsaeian, 2024. "Stein-like Common Correlated Effects Estimation Under Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202409, University of Kansas, Department of Economics.
  • Handle: RePEc:kan:wpaper:202409
    as

    Download full text from publisher

    File URL: https://kuwpaper.ku.edu/2024Papers/202409.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dukpa Kim, 2014. "Common breaks in time trends for large panel data with a factor structure," Econometrics Journal, Royal Economic Society, vol. 17(3), pages 301-337, October.
    2. Chihwa Kao & Lorenzo Trapani & Giovanni Urga, 2012. "Asymptotics for Panel Models with Common Shocks," Econometric Reviews, Taylor & Francis Journals, vol. 31(4), pages 390-439.
    3. Ullah, Aman, 1974. "On the sampling distribution of improved estimators for coefficients in linear regression," Journal of Econometrics, Elsevier, vol. 2(2), pages 143-150, July.
    4. Tae‐Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Forecasting Under Structural Breaks Using Improved Weighted Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1485-1501, December.
    5. Pesaran, M. Hashem, 2015. "Time Series and Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780198759980, Decembrie.
    6. Degui Li & Junhui Qian & Liangjun Su, 2016. "Panel Data Models With Interactive Fixed Effects and Multiple Structural Breaks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1804-1819, October.
    7. Hansen, Bruce E., 2009. "Averaging Estimators For Regressions With A Possible Structural Break," Econometric Theory, Cambridge University Press, vol. 25(6), pages 1498-1514, December.
    8. Lumsdaine, Robin L. & Okui, Ryo & Wang, Wendun, 2023. "Estimation of panel group structure models with structural breaks in group memberships and coefficients," Journal of Econometrics, Elsevier, vol. 233(1), pages 45-65.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahnaz Parsaeian, 2024. "Stein-like Common Correlated Effects Estimation under Structural Breaks," Econometrics, MDPI, vol. 12(2), pages 1-23, April.
    2. Wang, Yiren & Phillips, Peter C.B. & Su, Liangjun, 2024. "Panel data models with time-varying latent group structures," Journal of Econometrics, Elsevier, vol. 240(1).
    3. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    4. Horváth, Lajos & Rice, Gregory, 2019. "Asymptotics for empirical eigenvalue processes in high-dimensional linear factor models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 138-165.
    5. Ryo Okui & Yutao Sun & Wendun Wang, 2025. "Recovering latent linkage structures and spillover effects with structural breaks in panel data models," Papers 2501.09517, arXiv.org.
    6. Tae‐Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Optimal forecast under structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 965-987, August.
    7. Bai, Jushan & Han, Xu & Shi, Yutang, 2020. "Estimation and inference of change points in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 219(1), pages 66-100.
    8. Jiang, Peiyun & Kurozumi, Eiji, 2021. "A new test for common breaks in heterogeneous panel data models," Discussion paper series HIAS-E-107, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    9. Claudia García-García & Catalina B. García-García & Román Salmerón, 2021. "Confronting collinearity in environmental regression models: evidence from world data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 895-926, September.
    10. Ghosh, Soumya Kanti & Nath, Hiranya K., 2023. "What determines private and household savings in India?," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 639-651.
    11. Chudik, Alexander & Pesaran, M. Hashem, 2019. "Mean group estimation in presence of weakly cross-correlated estimators," Economics Letters, Elsevier, vol. 175(C), pages 101-105.
    12. Francisco Javier Forcadell & Fernando Úbeda, 2022. "Individual entrepreneurial orientation and performance: the mediating role of international entrepreneurship," International Entrepreneurship and Management Journal, Springer, vol. 18(2), pages 875-900, June.
    13. Emmanuel Anyigbah & Yusheng Kong & Bless Kofi Edziah & Ahotovi Thomas Ahoto & Wilhelmina Seyome Ahiaku, 2023. "Board Characteristics and Corporate Sustainability Reporting: Evidence from Chinese Listed Companies," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    14. Nico Knuth & Andreas Nastansky, 2025. "Anwendung von Deep Learning in der Prognose der Volatilität des DAX: Ein Vergleich der Prognosegüte von GARCH und LSTM," Statistische Diskussionsbeiträge 59, Universität Potsdam, Wirtschafts- und Sozialwissenschaftliche Fakultät.
    15. Bowei Guo & Giorgio Castagneto Gissey, 2019. "Cost Pass-through in the British Wholesale Electricity Market: Implications of Brexit and the ETS reform," Working Papers EPRG1937, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    16. Polemis, Michael & Tselekounis, Markos, 2019. "Does deregulation drive innovation intensity? Lessons learned from the OECD telecommunications sector," MPRA Paper 92770, University Library of Munich, Germany.
    17. Arestis, Philip & Ferreiro, Jesus & Gomez, Carmen, 2023. "Does employment protection legislation affect employment and unemployment?11We acknowledge the comments of an editor and an associate editor of the journal and three reviewers. Their suggestions and r," Economic Modelling, Elsevier, vol. 126(C).
    18. Koo, Bonsoo & Seo, Myung Hwan, 2015. "Structural-break models under mis-specification: Implications for forecasting," Journal of Econometrics, Elsevier, vol. 188(1), pages 166-181.
    19. Elisa Cavatorta & Ron P. Smith, 2017. "Factor Models in Panels with Cross-sectional Dependence: An Application to the Extended SIPRI Military Expenditure Data," Defence and Peace Economics, Taylor & Francis Journals, vol. 28(4), pages 437-456, July.
    20. Catalán, Mario & Hoffmaister, Alexander W., 2022. "When banks punch back: Macrofinancial feedback loops in stress tests," Journal of International Money and Finance, Elsevier, vol. 124(C).

    More about this item

    Keywords

    Common correlated effects; Cross-sectional dependence; Heterogeneous panels; Structural breaks.;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kan:wpaper:202409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Zongwu Cai (email available below). General contact details of provider: https://edirc.repec.org/data/deuksus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.