IDEAS home Printed from https://ideas.repec.org/p/pot/statdp/59.html
   My bibliography  Save this paper

Anwendung von Deep Learning in der Prognose der Volatilität des DAX: Ein Vergleich der Prognosegüte von GARCH und LSTM

Author

Listed:
  • Nico Knuth
  • Andreas Nastansky

    (Hochschule für Wirtschaft und Recht (HWR) Berlin)

Abstract

Die Fähigkeit Volatilität präzise vorherzusagen, ist von zentraler Bedeutung für das Risikomanagement in Banken und für das Treffen fundierter Anlageentscheidungen. In diesem Beitrag wird der Einsatz von Deep-Learning-Methoden − speziell des Long Short-Term Memory (LSTM)-Netzwerkes − zur Prognose der Volatilität des Deutschen Aktienindex analysiert. Hierbei wird die Prognosegüte des LSTMs mit der von gängigen zeitreihenökonometrischen Ansätzen, wie den Generalized Autoregressive Conditional Heteroscedaticity (GARCH)- Modellen, verglichen. Obwohl LSTMs in vielen Bereichen zunehmend Anwendung finden, ist ihr Einsatz in der Vorhersage von Finanzmarktzeitreihen im Vergleich zu etablierten ökonometrischen Modellen noch wenig untersucht. Die empirischen Ergebnisse zeigen, dass das LSTM verschiedene symmetrische und asymmetrische GARCH-Modelle in Bezug auf die Vorhersagegenauigkeit sowohl im Trainings- als auch im Testdatensatz deutlich übertrifft. Künstliche Neuronale Netze bieten eine bessere Generalisierungsfähigkeit und niedrigere Prognosefehler. Gleichzeitig werden Herausforderungen des Einsatzes neuronaler Netze im stark regulierten Bankensektor diskutiert.

Suggested Citation

  • Nico Knuth & Andreas Nastansky, 2025. "Anwendung von Deep Learning in der Prognose der Volatilität des DAX: Ein Vergleich der Prognosegüte von GARCH und LSTM," Statistische Diskussionsbeiträge 59, Universität Potsdam, Wirtschafts- und Sozialwissenschaftliche Fakultät.
  • Handle: RePEc:pot:statdp:59
    DOI: 10.25932/publishup-67486
    as

    Download full text from publisher

    File URL: https://doi.org/10.25932/publishup-67486
    Download Restriction: no

    File URL: https://libkey.io/10.25932/publishup-67486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brooks,Chris, 2008. "RATS Handbook to Accompany Introductory Econometrics for Finance," Cambridge Books, Cambridge University Press, number 9780521896955, July.
    2. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    5. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    6. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    7. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    8. Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
    9. Till Barz & Andreas Nastansky, 2024. "Herausforderungen des finanziellen Risikomanagements: Eine empirische Untersuchung des Value at Risk-Ansatzes in Stresssituationen," Statistische Diskussionsbeiträge 57, Universität Potsdam, Wirtschafts- und Sozialwissenschaftliche Fakultät.
    10. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    11. Pesaran, M. Hashem, 2015. "Time Series and Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780198759980, Decembrie.
    12. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    13. Bera, Anil K & Higgins, Matthew L, 1993. "ARCH Models: Properties, Estimation and Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 7(4), pages 305-366, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    2. Benlagha, Noureddine & Chargui, Sana, 2017. "Range-based and GARCH volatility estimation: Evidence from the French asset market," Global Finance Journal, Elsevier, vol. 32(C), pages 149-165.
    3. Nelson, Daniel B., 1996. "Asymptotic filtering theory for multivariate ARCH models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 1-47.
    4. James W. Taylor, 2005. "Generating Volatility Forecasts from Value at Risk Estimates," Management Science, INFORMS, vol. 51(5), pages 712-725, May.
    5. Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating volatility forecasts in option pricing in the context of a simulated options market," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
    6. Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(4), pages 445-463, October.
    7. Siddique, Akhtar R., 2003. "Common asset pricing factors in volatilities and returns in futures markets," Journal of Banking & Finance, Elsevier, vol. 27(12), pages 2347-2368, December.
    8. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    9. Kumar, Dilip & Maheswaran, S., 2014. "A new approach to model and forecast volatility based on extreme value of asset prices," International Review of Economics & Finance, Elsevier, vol. 33(C), pages 128-140.
    10. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    11. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    12. Khoo, Zhi De & Ng, Kok Haur & Koh, You Beng & Ng, Kooi Huat, 2024. "Forecasting volatility of stock indices: Improved GARCH-type models through combined weighted volatility measure and weighted volatility indicators," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    13. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    14. Nikkin L. Beronilla & Dennis S. Mapa, 2008. "Range-based models in estimating value-at-risk (VaR)," Philippine Review of Economics, University of the Philippines School of Economics and Philippine Economic Society, vol. 45(2), pages 87-99, December.
    15. CHIA-LIN CHANG & MICHAEL McALEER & ROENGCHAI TANSUCHAT, 2012. "Modelling Long Memory Volatility In Agricultural Commodity Futures Returns," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-27.
    16. Marcin Fałdziński & Piotr Fiszeder & Witold Orzeszko, 2020. "Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression," Energies, MDPI, vol. 14(1), pages 1-18, December.
    17. Chris Motengwe & Angel Pardo, 2015. "A Study of Seasonality on the Safex Wheat Market," Agrekon, Taylor & Francis Journals, vol. 54(4), pages 45-72, November.
    18. Angelidis, Timotheos & Benos, Alexandros & Degiannakis, Stavros, 2004. "The Use of GARCH Models in VaR Estimation," MPRA Paper 96332, University Library of Munich, Germany.
    19. Subrata Roy, 2020. "Stock Market Asymmetry and Investors’ Sensation on Prime Minister: Indian Evidence," Jindal Journal of Business Research, , vol. 9(2), pages 148-161, December.
    20. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Keywords

    asymmetrische Volatilität; GARCH; LSTM; Künstliche Neuronale Netze; Volatilitätsprognosen;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pot:statdp:59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marco Winkler (email available below). General contact details of provider: https://edirc.repec.org/data/lspotde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.