IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v394y2019icp53-65.html
   My bibliography  Save this article

Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change

Author

Listed:
  • Barton, Madeleine G.
  • Terblanche, John S.
  • Sinclair, Brent J.

Abstract

Terrestrial insects are responding to ongoing climate change. While these responses have been primarily linked to rising temperatures, insects are sensitive to desiccation, and the impacts of altered precipitation regimes remain relatively unexplored. Here, we develop a mechanistic model of survival and performance responses to both temperature and desiccation stress, focussing on Lepidoptera in Africa, where a general understanding of such responses to climate change is urgently required. We run the model with climate data from general circulation models at daily time intervals under current (2011–2015) and projected future (2046–2050) climate scenarios. We first simulate four hypothetical, but typical, Lepidoptera that vary in thermal tolerance and developmental physiology, and then add a constraint on survival due to desiccation. Including desiccation stress leads to a 68% decline in the species range, in comparison to simulations where only species mortality due to temperature is considered. Furthermore, in response to predicted changes in both temperature and rainfall, species performances and survival are expected to change in a non-uniform manner across the landscape: species’ ranges shift towards coastal regions and into higher latitudes in the southern, but not northern, hemisphere. We validate the model predictions with data from two endemic African Lepidoptera, and find that the model agrees well with their empirical distribution, but note that our model fails to account for range expansion due to water availability unrelated to rainfall (e.g. irrigation). Nonetheless, these final simulations show how the model can be readily applied to insects for which baseline physiological data already exist (or for which appropriate data can be gathered), thereby providing a useful framework with which to explore species responses to future changes in temperature and precipitation.

Suggested Citation

  • Barton, Madeleine G. & Terblanche, John S. & Sinclair, Brent J., 2019. "Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change," Ecological Modelling, Elsevier, vol. 394(C), pages 53-65.
  • Handle: RePEc:eee:ecomod:v:394:y:2019:i:c:p:53-65
    DOI: 10.1016/j.ecolmodel.2018.12.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018304289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.12.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel P. Bebber & Mark A. T. Ramotowski & Sarah J. Gurr, 2013. "Crop pests and pathogens move polewards in a warming world," Nature Climate Change, Nature, vol. 3(11), pages 985-988, November.
    2. Keywan Riahi & Shilpa Rao & Volker Krey & Cheolhung Cho & Vadim Chirkov & Guenther Fischer & Georg Kindermann & Nebojsa Nakicenovic & Peter Rafaj, 2011. "RCP 8.5—A scenario of comparatively high greenhouse gas emissions," Climatic Change, Springer, vol. 109(1), pages 33-57, November.
    3. Tonnang, Henri E.Z. & Hervé, Bisseleua D.B. & Biber-Freudenberger, Lisa & Salifu, Daisy & Subramanian, Sevgan & Ngowi, Valentine B. & Guimapi, Ritter Y.A. & Anani, Bruce & Kakmeni, Francois M.M. & Aff, 2017. "Advances in crop insect modelling methods—Towards a whole system approach," Ecological Modelling, Elsevier, vol. 354(C), pages 88-103.
    4. Camille Parmesan & Nils Ryrholm & Constantí Stefanescu & Jane K. Hill & Chris D. Thomas & Henri Descimon & Brian Huntley & Lauri Kaila & Jaakko Kullberg & Toomas Tammaru & W. John Tennent & Jeremy A. , 1999. "Poleward shifts in geographical ranges of butterfly species associated with regional warming," Nature, Nature, vol. 399(6736), pages 579-583, June.
    5. Dim Coumou & Stefan Rahmstorf, 2012. "A decade of weather extremes," Nature Climate Change, Nature, vol. 2(7), pages 491-496, July.
    6. Michael E. Dillon & George Wang & Raymond B. Huey, 2010. "Global metabolic impacts of recent climate warming," Nature, Nature, vol. 467(7316), pages 704-706, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barton, Madeleine & Parry, Hazel & Ward, Samantha & Hoffmann, Ary A. & Umina, Paul A. & van Helden, Maarten & Macfadyen, Sarina, 2021. "Forecasting impacts of biological control under future climates: mechanistic modelling of an aphid pest and a parasitic wasp," Ecological Modelling, Elsevier, vol. 457(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haruka Ohashi & Tomoko Hasegawa & Akiko Hirata & Shinichiro Fujimori & Kiyoshi Takahashi & Ikutaro Tsuyama & Katsuhiro Nakao & Yuji Kominami & Nobuyuki Tanaka & Yasuaki Hijioka & Tetsuya Matsui, 2019. "Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Fujii, Hidemichi & Managi, Shunsuke, 2013. "Which industry is greener? An empirical study of nine industries in OECD countries," Energy Policy, Elsevier, vol. 57(C), pages 381-388.
    3. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    4. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    5. Fujimori, Shinichiro & Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru, 2016. "Global energy model hindcasting," Energy, Elsevier, vol. 114(C), pages 293-301.
    6. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    7. Speers, Ann E. & Besedin, Elena Y. & Palardy, James E. & Moore, Chris, 2016. "Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model," Ecological Economics, Elsevier, vol. 128(C), pages 33-43.
    8. Claudio, Morana & Giacomo, Sbrana, 2017. "Temperature anomalies, radiative forcing and ENSO," Working Papers 361, University of Milano-Bicocca, Department of Economics, revised 10 Feb 2017.
    9. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    10. Malik, Ihtisham A. & Chowdhury, Hasibul & Alam, Md Samsul, 2023. "Equity market response to natural disasters: Does firm's corporate social responsibility make difference?," Global Finance Journal, Elsevier, vol. 55(C).
    11. Jascha Lehmann & Dim Coumou & Katja Frieler, 2015. "Increased record-breaking precipitation events under global warming," Climatic Change, Springer, vol. 132(4), pages 501-515, October.
    12. Amouzou, Kokou Adambounou & Naab, Jesse B. & Lamers, John P.A. & Borgemeister, Christian & Becker, Mathias & Vlek, Paul L.G., 2018. "CROPGRO-Cotton model for determining climate change impacts on yield, water- and N- use efficiencies of cotton in the Dry Savanna of West Africa," Agricultural Systems, Elsevier, vol. 165(C), pages 85-96.
    13. Weixing Ma & Tinglin Huang & Xuan Li & Zizhen Zhou & Yang Li & Kang Zeng, 2015. "The Effects of Storm Runoff on Water Quality and the Coping Strategy of a Deep Canyon-Shaped Source Water Reservoir in China," IJERPH, MDPI, vol. 12(7), pages 1-17, July.
    14. Wimhurst, Joshua J. & Greene, J. Scott, 2019. "Oklahoma's future wind energy resources and their relationship with the Central Plains low-level jet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    15. Cotto, Olivier & Chevin, Luis-Miguel, 2020. "Fluctuations in lifetime selection in an autocorrelated environment," Theoretical Population Biology, Elsevier, vol. 134(C), pages 119-128.
    16. Baarsch, Florent & Granadillos, Jessie R. & Hare, William & Knaus, Maria & Krapp, Mario & Schaeffer, Michiel & Lotze-Campen, Hermann, 2020. "The impact of climate change on incomes and convergence in Africa," World Development, Elsevier, vol. 126(C).
    17. van der Linden, Sander, 2014. "On the relationship between personal experience, affect and risk perception: the case of climate change," LSE Research Online Documents on Economics 57689, London School of Economics and Political Science, LSE Library.
    18. Vélez-Espino, Luis A. & Koops, Marten A., 2012. "Capacity for increase, compensatory reserves, and catastrophes as determinants of minimum viable population in freshwater fishes," Ecological Modelling, Elsevier, vol. 247(C), pages 319-326.
    19. Weijia Wang & Kun Shi & Xiwen Wang & Yunlin Zhang & Boqiang Qin & Yibo Zhang & R. Iestyn Woolway, 2024. "The impact of extreme heat on lake warming in China," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    20. Fernando Goulart & Frédéric Mertens, 2017. "The Late mangos- Is There Any Doubt Humans Are Inducing Climate Change?," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(7), pages 2022-2024, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:394:y:2019:i:c:p:53-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.