IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Mind your ps and qs! Improving ARMA forecasts with RBC priors

  • Lees, Kirdan
  • Matheson, Troy

We utilise prior information from a simple RBC model to improve ARMA forecasts of post-war US GDP. We develop three alternative ARMA forecasting processes that use varying degrees of information from the Campbell (1994) flexible labour model. Directly calibrating the model produces poor forecasting performance whereas a model that uses a Bayesian framework to take the model to the data, yields forecasting performance comparable to a purely statistical ARMA process. A final model that uses theory only to restrict the order of the ARMA process (the ps and qs), but that estimates the ARMA parameters using maximum likelihood, yields improved forecasting performance.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Economics Letters.

Volume (Year): 96 (2007)
Issue (Month): 2 (August)
Pages: 275-281

in new window

Handle: RePEc:eee:ecolet:v:96:y:2007:i:2:p:275-281
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. V. V. Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2004. "A Critique of Structural VARs Using Real Business Cycle Theory," Levine's Bibliography 122247000000000518, UCLA Department of Economics.
  2. King, Robert G. & Rebelo, Sergio T., 1999. "Resuscitating real business cycles," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 14, pages 927-1007 Elsevier.
  3. Todd E. Clark & Michael W. McCracken, 1999. "Tests of equal forecast accuracy and encompassing for nested models," Research Working Paper 99-11, Federal Reserve Bank of Kansas City.
  4. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
  5. Marco Del Negro & Frank Schorfheide, 2002. "Priors from general equilibrium models for VARs," FRB Atlanta Working Paper 2002-14, Federal Reserve Bank of Atlanta.
  6. Perron, P, 1988. "The Great Crash, The Oil Price Shock And The Unit Root Hypothesis," Papers 338, Princeton, Department of Economics - Econometric Research Program.
  7. Campbell, John Y & Ludvigson, Sydney, 2001. "Elasticities of Substitution in Real Business Cycle Models with Home Protection," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 33(4), pages 847-75, November.
  8. Lawrence J. Christiano, 1988. "Searching For a Break in GNP," NBER Working Papers 2695, National Bureau of Economic Research, Inc.
  9. Ludvigson, Sydney, 1996. "The macroeconomic effects of government debt in a stochastic growth model," Journal of Monetary Economics, Elsevier, vol. 38(1), pages 25-45, August.
  10. Hansen, Gary D., 1985. "Indivisible labor and the business cycle," Journal of Monetary Economics, Elsevier, vol. 16(3), pages 309-327, November.
  11. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
  12. Bai, Jushan & Lumsdaine, Robin L & Stock, James H, 1998. "Testing for and Dating Common Breaks in Multivariate Time Series," Review of Economic Studies, Wiley Blackwell, vol. 65(3), pages 395-432, July.
  13. repec:att:wimass:9417 is not listed on IDEAS
  14. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  15. Lawrence J. Christiano & Martin Eichenbaum & Robert J. Vigfusson, 2006. "Assessing structural VARs," International Finance Discussion Papers 866, Board of Governors of the Federal Reserve System (U.S.).
    • Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2007. "Assessing Structural VARs," NBER Chapters, in: NBER Macroeconomics Annual 2006, Volume 21, pages 1-106 National Bureau of Economic Research, Inc.
  16. Ingram, Beth F. & Whiteman, Charles H., 1994. "Supplanting the 'Minnesota' prior: Forecasting macroeconomic time series using real business cycle model priors," Journal of Monetary Economics, Elsevier, vol. 34(3), pages 497-510, December.
  17. Thomas Lubik & Frank Schorfheide, 2005. "A Bayesian Look at New Open Economy Macroeconomics," Economics Working Paper Archive 521, The Johns Hopkins University,Department of Economics.
  18. Canova, Fabio, 1998. "Detrending and business cycle facts," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 475-512, May.
  19. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
  20. Greenwood, Jeremy & Hercowitz, Zvi & Huffman, Gregory W, 1988. "Investment, Capacity Utilization, and the Real Business Cycle," American Economic Review, American Economic Association, vol. 78(3), pages 402-17, June.
  21. Martin Lettau, 2003. "Inspecting The Mechanism: Closed-Form Solutions For Asset Prices In Real Business Cycle Models," Economic Journal, Royal Economic Society, vol. 113(489), pages 550-575, 07.
  22. Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, EconWPA.
  23. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:96:y:2007:i:2:p:275-281. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.