IDEAS home Printed from https://ideas.repec.org/p/boe/boeewp/0716.html

DSGE-based priors for BVARs and quasi-Bayesian DSGE estimation

Author

Listed:
  • Thomai Filippeli

    (Bank of England)

  • Richard Harrison

    (Bank of England)

  • Konstantinos Theodoridis

    (Cardiff Business School)

Abstract

We present a new method for estimating Bayesian vector auto-regression (VAR) models using priors from a dynamic stochastic general equilibrium (DSGE) model. We use the DSGE model priors to determine the moments of an independent Normal-Wishart prior for the VAR parameters. Two hyper-parameters control the tightness of the DSGE-implied priors on the autoregressive coefficients and the residual covariance matrix respectively. Determining these hyper-parameters by selecting the values that maximize the marginal likelihood of the Bayesian VAR provides a method for isolating subsets of DSGE parameter priors that are at odds with the data. We illustrate the ability of our approach to correctly detect incorrect DSGE priors for the variance of structural shocks using a Monte Carlo experiment. We also demonstrate how posterior estimates of the DSGE parameter vector can be recovered from the BVAR posterior estimates: a new ‘quasi-Bayesian’ DSGE estimation. An empirical application on US data reveals economically meaningful differences in posterior parameter estimates when comparing our quasi-Bayesian estimator with Bayesian maximum likelihood. Our method also indicates that the DSGE prior implications for the residual covariance matrix are at odds with the data.

Suggested Citation

  • Thomai Filippeli & Richard Harrison & Konstantinos Theodoridis, 2018. "DSGE-based priors for BVARs and quasi-Bayesian DSGE estimation," Bank of England working papers 716, Bank of England.
  • Handle: RePEc:boe:boeewp:0716
    as

    Download full text from publisher

    File URL: https://www.bankofengland.co.uk/-/media/boe/files/working-paper/2018/dsge-based-priors-for-bvars-and-quasi-bayesian-dsge-estimation.pdf?la=en&hash=37D28EF7F35865585C0AF51BBCB5718CEF6D4E24
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Loria, Francesca & Matthes, Christian & Wang, Mu-Chun, 2022. "Economic theories and macroeconomic reality," Journal of Monetary Economics, Elsevier, vol. 126(C), pages 105-117.
    3. Zhang, Xiaodi, 2025. "Integrating policy design with agricultural emissions reduction in China: A multi-sector DSGE Approach," Economic Analysis and Policy, Elsevier, vol. 86(C), pages 2019-2048.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boe:boeewp:0716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research (email available below). General contact details of provider: https://edirc.repec.org/data/boegvuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.