IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v66y2008i1p127-140.html
   My bibliography  Save this article

General equilibrium modelling of the direct and indirect economic impacts of water quality improvements in the Netherlands at national and river basin scale

Author

Listed:
  • Brouwer, Roy
  • Hofkes, Marjan
  • Linderhof, Vincent

Abstract

The main objective of the study presented in this paper is to estimate the direct and indirect economic impacts of water quality policy scenarios in the Netherlands focusing on the reduction of emission levels of nutrients and a number of eco-toxicological substances. For this purpose, an Applied General Equilibrium (AGE) model consisting of 27 production sectors is extended to water through the inclusion of substitution elasticities between labour, capital and emissions to water in the sectors' production functions. The macro-economic costs of a 10, 20 and 50% reduction of the emission levels in the year 2000 of ten priority substances in the EU Water Framework Directive vary between 0.2 and 9.4% of Net National Income (NNI). A large share of the total economic costs are borne by important sources of pollution like commercial shipping, the chemical and metal industry. However, important spin-off effects due to adaptation take place in the tertiary service sector. Besides the estimation of the economy-wide impacts of water quality improvements, the novelty of the study presented here is found in the downscaling of national and sector results to river basin level and the estimation of shadow prices for water-polluting substances through the introduction of an emission permits market.

Suggested Citation

  • Brouwer, Roy & Hofkes, Marjan & Linderhof, Vincent, 2008. "General equilibrium modelling of the direct and indirect economic impacts of water quality improvements in the Netherlands at national and river basin scale," Ecological Economics, Elsevier, vol. 66(1), pages 127-140, May.
  • Handle: RePEc:eee:ecolec:v:66:y:2008:i:1:p:127-140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(07)00539-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ing-Marie Gren & Paul Jannke & Katarina Elofsson, 1997. "Cost-Effective Nutrient Reductions to the Baltic Sea," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 10(4), pages 341-362, December.
    2. Bonham, John G. & Bosch, Darrell J. & Pease, James W., 2006. "Cost-Effectiveness of Nutrient Management and Buffers: Comparisons of Two Spatial Scenarios," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 38(1), pages 1-16, April.
    3. Wang, Tao, 2006. "Cost Effectiveness in River Management: Evaluation of Integrated River Policy System in Tidal Ouse," Climate Change Modelling and Policy Working Papers 12054, Fondazione Eni Enrico Mattei (FEEM).
    4. Wanhong Yang & Alfons Weersink, 2004. "Cost-effective Targeting of Riparian Buffers," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 52(1), pages 17-34, March.
    5. Beavis, Brian & Walker, Martin, 1979. "Interactive pollutants and joint abatement costs: Achieving water quality standards with effluent charges," Journal of Environmental Economics and Management, Elsevier, vol. 6(4), pages 275-286, December.
    6. Gerlagh, Reyer & Dellink, Rob & Hofkes, Marjan & Verbruggen, Harmen, 2002. "A measure of sustainable national income for the Netherlands," Ecological Economics, Elsevier, vol. 41(1), pages 157-174, April.
    7. Tao Wang, 2006. "Cost Effectiveness in River Management: Evaluation of Integrated River Policy System in Tidal Ouse," Working Papers 2006.142, Fondazione Eni Enrico Mattei.
    8. Okadera, Tomohiro & Watanabe, Masataka & Xu, Kaiqin, 2006. "Analysis of water demand and water pollutant discharge using a regional input-output table: An application to the City of Chongqing, upstream of the Three Gorges Dam in China," Ecological Economics, Elsevier, vol. 58(2), pages 221-237, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dellink, Rob & Brouwer, Roy & Linderhof, Vincent & Stone, Karin, 2011. "Bio-economic modeling of water quality improvements using a dynamic applied general equilibrium approach," Ecological Economics, Elsevier, vol. 71(C), pages 63-79.
    2. Balana, Bedru Babulo & Vinten, Andy & Slee, Bill, 2011. "A review on cost-effectiveness analysis of agri-environmental measures related to the EU WFD: Key issues, methods, and applications," Ecological Economics, Elsevier, vol. 70(6), pages 1021-1031, April.
    3. George HALKOS & Georgia GALANI, 2014. "Cost Effectiveness Analysis in Reducing Nutrient Loading in Baltic and Black Seas A Review," Journal of Advanced Research in Management, ASERS Publishing, vol. 5(1), pages 28-51.
    4. Amon-Armah, Frederick & Yiridoe, Emmanuel K. & Hebb, Dale & Jamieson, Rob, 2013. "Nitrogen abatement cost comparison for cropping systems under alternative management choices," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149915, Agricultural and Applied Economics Association.
    5. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    6. Bystrom, Olof & Andersson, Hans & Gren, Ing-Marie, 2000. "Economic criteria for using wetlands as nitrogen sinks under uncertainty," Ecological Economics, Elsevier, vol. 35(1), pages 35-45, October.
    7. Boxall, Peter C. & Weber, Marian & Perger, Orsolya & Cutlac, Marius & Samarawickrema, Antony, 2008. "Results from the Farm Behaviour Component of the Integrated Economic-Hydrologic Model for the Watershed Evaluation of Beneficial Management Practices Program," Project Report Series 116268, University of Alberta, Department of Resource Economics and Environmental Sociology.
    8. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    9. Kiuila, O. & Rutherford, T.F., 2013. "Piecewise smooth approximation of bottom–up abatement cost curves," Energy Economics, Elsevier, vol. 40(C), pages 734-742.
    10. Dietz, Simon & Neumayer, Eric, 2007. "Weak and strong sustainability in the SEEA: Concepts and measurement," Ecological Economics, Elsevier, vol. 61(4), pages 617-626, March.
    11. Kari Hyytiäinen & Lassi Ahlvik & Heini Ahtiainen & Janne Artell & Anni Huhtala & Kim Dahlbo, 2015. "Policy Goals for Improved Water Quality in the Baltic Sea: When do the Benefits Outweigh the Costs?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(2), pages 217-241, June.
    12. Woodward, Richard T., 2011. "Double-dipping in environmental markets," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 153-169, March.
    13. repec:ags:afjare:225655 is not listed on IDEAS
    14. Vechiu, Natalia, 2008. "The evolution of the supply chain in a three-region framework and its implications on welfare under economic integration," Conference papers 331754, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Dellink, Rob & van Ierland, Ekko, 2006. "Pollution abatement in the Netherlands: A dynamic applied general equilibrium assessment," Journal of Policy Modeling, Elsevier, vol. 28(2), pages 207-221, February.
    16. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.
    17. Elofsson, Katarina & Folmer, Henk & Gren, Ing-Marie, 2003. "Management of eutrophicated coastal ecosystems: a synopsis of the literature with emphasis on theory and methodology," Ecological Economics, Elsevier, vol. 47(1), pages 1-11, November.
    18. Stephenson, Kurt & Shabman, Leonard, 2015. "Nutrient Assimilation Services for Water Quality Credit Trading Programs," RFF Working Paper Series dp-15-33, Resources for the Future.
    19. Santosh R. Ghimire & Adam C. Nayak & Joel Corona & Rajbir Parmar & Raghavan Srinivasan & Katie Mendoza & John M. Johnston, 2022. "Holistic Sustainability Assessment of Riparian Buffer Designs: Evaluation of Alternative Buffer Policy Scenarios Integrating Stream Water Quality and Costs," Sustainability, MDPI, vol. 14(19), pages 1-33, September.
    20. Gao, Yan & Liu, Gengyuan & Casazza, Marco & Hao, Yan & Zhang, Yan & Giannetti, Biagio F., 2018. "Economy-pollution nexus model of cities at river basin scale based on multi-agent simulation: A conceptual framework," Ecological Modelling, Elsevier, vol. 379(C), pages 22-38.
    21. Erik Schmieman & Ekko van Ierland & Leen Hordijk, 2002. "Dynamic Efficiency with Multi-Pollutants and Multi-Targets The Case of Acidification and Tropospheric Ozone Formation in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(2), pages 133-148, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:66:y:2008:i:1:p:127-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.