IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v161y2019icp186-192.html
   My bibliography  Save this article

Impacts of integrated soil fertility management on yield and household income: The case of Tamale (Ghana) and Kakamega (Kenya)

Author

Listed:
  • Adolwa, Ivan Solomon
  • Schwarze, Stefan
  • Buerkert, Andreas

Abstract

Integrated soil fertility management (ISFM) has been widely promoted by research and philanthropic organizations as well as governments to increase crop yields and improve livelihoods of smallholder farmers in Africa. Therefore, it is surprising that there is still scant information on its impact on crop yields and household income. This paper uses a counterfactual model to assess ISFM impact on yields and total household incomes using farm household data from Tamale (Northern Ghana) and Kakamega (Western Kenya). The analyses reveal that ISFM adoption leads to an increase in maize yields by up to 27% in Tamale and 16% in Kakamega. Increasing the number of ISFM components, however, does not improve yields. Despite the effect on yields, adoption of ISFM does not increase total household incomes at both locations. Some implications for future research are discussed.

Suggested Citation

  • Adolwa, Ivan Solomon & Schwarze, Stefan & Buerkert, Andreas, 2019. "Impacts of integrated soil fertility management on yield and household income: The case of Tamale (Ghana) and Kakamega (Kenya)," Ecological Economics, Elsevier, vol. 161(C), pages 186-192.
  • Handle: RePEc:eee:ecolec:v:161:y:2019:i:c:p:186-192
    DOI: 10.1016/j.ecolecon.2019.03.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800918310929
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2019.03.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Noltze, Martin & Schwarze, Stefan & Qaim, Matin, 2013. "Impacts of natural resource management technologies on agricultural yield and household income: The system of rice intensification in Timor Leste," Ecological Economics, Elsevier, vol. 85(C), pages 59-68.
    2. Manda, J. & Gardebroek, C. & Kuntashula, E. & Alene, A.D., 2018. "Impact of Improved Maize Varieties on Food Security in Eastern Zambia: a doubly robust analysis," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277004, International Association of Agricultural Economists.
    3. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    4. Awudu Abdulai & Wallace Huffman, 2014. "The Adoption and Impact of Soil and Water Conservation Technology: An Endogenous Switching Regression Application," Land Economics, University of Wisconsin Press, vol. 90(1), pages 26-43.
    5. Kabunga, Nassul S. & Dubois, Thomas & Qaim, Matin, 2014. "Impact of tissue culture banana technology on farm household income and food security in Kenya," Food Policy, Elsevier, vol. 45(C), pages 25-34.
    6. Binswanger-Mkhize, Hans P. & Savastano, Sara, 2017. "Agricultural intensification: The status in six African countries," Food Policy, Elsevier, vol. 67(C), pages 26-40.
    7. Mendola, Mariapia, 2007. "Agricultural technology adoption and poverty reduction: A propensity-score matching analysis for rural Bangladesh," Food Policy, Elsevier, vol. 32(3), pages 372-393, June.
    8. Cunguara, Benedito & Darnhofer, Ika, 2011. "Assessing the impact of improved agricultural technologies on household income in rural Mozambique," Food Policy, Elsevier, vol. 36(3), pages 378-390, June.
    9. Kassie, Menale & Shiferaw, Bekele & Muricho, Geoffrey, 2011. "Agricultural Technology, Crop Income, and Poverty Alleviation in Uganda," World Development, Elsevier, vol. 39(10), pages 1784-1795.
    10. Drechsel, Pay & Gyiele, Lucy & Kunze, Dagmar & Cofie, Olufunke, 2001. "Population density, soil nutrient depletion, and economic growth in sub-Saharan Africa," Ecological Economics, Elsevier, vol. 38(2), pages 251-258, August.
    11. Khonje, Makaiko & Manda, Julius & Alene, Arega D. & Kassie, Menale, 2015. "Analysis of Adoption and Impacts of Improved Maize Varieties in Eastern Zambia," World Development, Elsevier, vol. 66(C), pages 695-706.
    12. Yiridoe, Emmanuel K. & Langyintuo, Augustine S. & Dogbe, Wilson, 2006. "Economics of the impact of alternative rice cropping systems on subsistence farming: Whole-farm analysis in northern Ghana," Agricultural Systems, Elsevier, vol. 91(1-2), pages 102-121, November.
    13. Ivan S. Adolwa & Stefan Schwarze & Imogen Bellwood-Howard & Nikolaus Schareika & Andreas Buerkert, 2017. "A comparative analysis of agricultural knowledge and innovation systems in Kenya and Ghana: sustainable agricultural intensification in the rural–urban interface," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 34(2), pages 453-472, June.
    14. Christopher B. Barrett & Christine M. Moser & Oloro V. McHugh & Joeli Barison, 2004. "Better Technology, Better Plots, or Better Farmers? Identifying Changes in Productivity and Risk among Malagasy Rice Farmers," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 869-888.
    15. Teklewold, Hailemariam & Kassie, Menale & Shiferaw, Bekele & Köhlin, Gunnar, 2013. "Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor," Ecological Economics, Elsevier, vol. 93(C), pages 85-93.
    16. Jouzi, Zeynab & Azadi, Hossein & Taheri, Fatemeh & Zarafshani, Kiumars & Gebrehiwot, Kindeya & Van Passel, Steven & Lebailly, Philippe, 2017. "Organic Farming and Small-Scale Farmers: Main Opportunities and Challenges," Ecological Economics, Elsevier, vol. 132(C), pages 144-154.
    17. Becerril, Javier & Abdulai, Awudu, 2010. "The Impact of Improved Maize Varieties on Poverty in Mexico: A Propensity Score-Matching Approach," World Development, Elsevier, vol. 38(7), pages 1024-1035, July.
    18. Bolwig, Simon & Gibbon, Peter & Jones, Sam, 2009. "The Economics of Smallholder Organic Contract Farming in Tropical Africa," World Development, Elsevier, vol. 37(6), pages 1094-1104, June.
    19. Yoko Kijima & Keijiro Otsuka & Dick Sserunkuuma, 2008. "Assessing the impact of NERICA on income and poverty in central and western Uganda," Agricultural Economics, International Association of Agricultural Economists, vol. 38(3), pages 327-337, May.
    20. Giller, Ken E. & Rowe, Ed C. & de Ridder, Nico & van Keulen, Herman, 2006. "Resource use dynamics and interactions in the tropics: Scaling up in space and time," Agricultural Systems, Elsevier, vol. 88(1), pages 8-27, April.
    21. Julius Manda & Cornelis Gardebroek & Elias Kuntashula & Arega D. Alene, 2018. "Impact of improved maize varieties on food security in Eastern Zambia: A doubly robust analysis," Review of Development Economics, Wiley Blackwell, vol. 22(4), pages 1709-1728, November.
    22. Mathenge, Mary K. & Smale, Melinda & Olwande, John, 2014. "The impacts of hybrid maize seed on the welfare of farming households in Kenya," Food Policy, Elsevier, vol. 44(C), pages 262-271.
    23. Khonje, Makaiko & Mkandawire, Petros & Manda, Julius & Alene, Arega, 2015. "Analysis of adoption and impacts of improved cassava varieties," 2015 Conference, August 9-14, 2015, Milan, Italy 211842, International Association of Agricultural Economists.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denise Hörner & Adrien Bouguen & Markus Frölich & Meike Wollni, 2019. "The Effects of Decentralized and Video-based Extension on the Adoption of Integrated Soil Fertility Management – Experimental Evidence from Ethiopia," NBER Working Papers 26052, National Bureau of Economic Research, Inc.
    2. Kihara, Job & Manda, Julius & Kimaro, Anthony & Swai, Elirehema & Mutungi, Christopher & Kinyua, Michael & Okori, Patrick & Fischer, Gundula & Kizito, Fred & Bekunda, Mateete, 2022. "Contributions of integrated soil fertility management (ISFM) to various sustainable intensification impact domains in Tanzania," Agricultural Systems, Elsevier, vol. 203(C).
    3. Hongyun Zheng & Wanglin Ma & Gucheng Li, 2021. "Adoption of organic soil amendments and its impact on farm performance: evidence from wheat farmers in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(2), pages 367-390, April.
    4. Hongyun Zheng & Wanglin Ma & Yanzhi Guo, 2023. "Does nutrition knowledge training improve dietary diversity and nutrition intake? Insights from rural China," Agribusiness, John Wiley & Sons, Ltd., vol. 39(S1), pages 1417-1436, December.
    5. Ojo, T.O. & Ogundeji, A.A. & Belle, J.A., 2021. "Climate change perception and impact of on-farm demonstration on intensity of adoption of adaptation strategies among smallholder farmers in South Africa," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    6. Ojo, Temitope & Ogundeji, Abiodun A. & Belle, Johannes A. & Demont, Matty, 2021. "A Three-Stage Approach of Understanding Climate Change Perception and Adaptation Strategies Among Smallholder Farmers in South Africa," 2021 Conference, August 17-31, 2021, Virtual 315854, International Association of Agricultural Economists.
    7. Denise Hörner & Adrien Bouguen & Markus Frölich & Meike Wollni, 2022. "Knowledge and Adoption of Complex Agricultural Technologies: Evidence from an Extension Experiment," The World Bank Economic Review, World Bank, vol. 36(1), pages 68-90.
    8. Muhammad Usman & Gulnaz Hameed & Abdul Saboor & Lal K. Almas & Muhammad Hanif, 2021. "R&D Innovation Adoption, Climatic Sensitivity, and Absorptive Ability Contribution for Agriculture TFP Growth in Pakistan," Agriculture, MDPI, vol. 11(12), pages 1-18, November.
    9. Hörner, Denise & Wollni, Meike, 2021. "Integrated soil fertility management and household welfare in Ethiopia," Food Policy, Elsevier, vol. 100(C).
    10. Makaiko G. Khonje & Christone Nyondo & Lemekezani Chilora & Julius H. Mangisoni & Jacob Ricker‐Gilbert & William J. Burke, 2022. "Exploring adoption effects of subsidies and soil fertility management in Malawi," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(3), pages 874-892, September.
    11. Yang, Qi & Zhu, Yueji & Liu, Ling & Wang, Fang, 2021. "Land tenure stability and adoption intensity of sustainable agricultural practices: Evidence from banana farmers in China," 2021 Conference, August 17-31, 2021, Virtual 315254, International Association of Agricultural Economists.
    12. Simphiwe Innocentia Hlatshwayo & Rob Slotow & Mjabuliseni Simon Cloapas Ngidi, 2023. "The Role of Smallholder Farming on Rural Household Dietary Diversity," Agriculture, MDPI, vol. 13(3), pages 1-16, February.
    13. Wanglin Ma & Xiaobing Wang, 2020. "Internet Use, Sustainable Agricultural Practices and Rural Incomes: Evidence from China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(4), pages 1087-1112, October.
    14. Martey, Edward & Kuwornu, John K.M., 2021. "Perceptions of Climate Variability and Soil Fertility Management Choices Among Smallholder Farmers in Northern Ghana," Ecological Economics, Elsevier, vol. 180(C).
    15. Denise Hörner & Meike Wollni, 2022. "Does integrated soil fertility management increase returns to land and labor?: Plot‐level evidence from Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 53(3), pages 337-355, May.
    16. Ni Zhuo & Baozhi Li & Qibiao Zhu & Chen Ji, 2023. "Smartphone‐based agricultural extension services and farm incomes: Evidence from Zhejiang Province in China," Review of Development Economics, Wiley Blackwell, vol. 27(3), pages 1383-1402, August.
    17. Hongyun Zheng & Wanglin Ma, 2023. "Smartphone-based information acquisition and wheat farm performance: insights from a doubly robust IPWRA estimator," Electronic Commerce Research, Springer, vol. 23(2), pages 633-658, June.
    18. Huan, Meili & Dong, Fengxia, 2023. "Sustainable Agricultural Practices and Crop Yield in China’s Maize Production," 2023 Annual Meeting, July 23-25, Washington D.C. 335656, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazushi Takahashi & Rie Muraoka & Keijiro Otsuka, 2020. "Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 31-45, January.
    2. Manda, Julius & Alene, Arega D. & Tufa, Adane H. & Abdoulaye, Tahirou & Wossen, Tesfamicheal & Chikoye, David & Manyong, Victor, 2019. "The poverty impacts of improved cowpea varieties in Nigeria: A counterfactual analysis," World Development, Elsevier, vol. 122(C), pages 261-271.
    3. Khonje, Makaiko & Mkandawire, Petros & Manda, Julius & Alene, Arega, 2015. "Analysis of adoption and impacts of improved cassava varieties," 2015 Conference, August 9-14, 2015, Milan, Italy 211842, International Association of Agricultural Economists.
    4. Garbero, A. & Marion, P., 2018. "IFAD RESEARCH SERIES 28 - Understanding the dynamics of adoption decisions and their poverty impacts: the case of improved maize seeds in Uganda," IFAD Research Series 280077, International Fund for Agricultural Development (IFAD).
    5. Ainembabazi, John Herbert & Abdoulaye, Tahirou & Feleke, Shiferaw & Alene, Arega & Dontsop-Nguezet, Paul M. & Ndayisaba, Pierre Celestin & Hicintuka, Cyrille & Mapatano, Sylvain & Manyong, Victor, 2018. "Who benefits from which agricultural research-for-development technologies? Evidence from farm household poverty analysis in Central Africa," World Development, Elsevier, vol. 108(C), pages 28-46.
    6. Bairagi, Subir & Bhandari, Humnath & Kumar Das, Subrata & Mohanty, Samarendu, 2021. "Flood-tolerant rice improves climate resilience, profitability, and household consumption in Bangladesh," Food Policy, Elsevier, vol. 105(C).
    7. Tufa, Adane Hirpa & Alene, Arega D. & Manda, Julius & Akinwale, M.G. & Chikoye, David & Feleke, Shiferaw & Wossen, Tesfamicheal & Manyong, Victor, 2019. "The productivity and income effects of adoption of improved soybean varieties and agronomic practices in Malawi," World Development, Elsevier, vol. 124(C), pages 1-1.
    8. Alwang, Jeffrey & Gotor, Elisabetta & Thiele, Graham & Hareau, Guy & Jaleta, Moti & Chamberlin, Jordan, 2019. "Pathways from research on improved staple crop germplasm to poverty reduction for smallholder farmers," Agricultural Systems, Elsevier, vol. 172(C), pages 16-27.
    9. Martey, Edward & Etwire, Prince Maxwell & Abdoulaye, Tahirou, 2020. "Welfare impacts of climate-smart agriculture in Ghana: Does row planting and drought-tolerant maize varieties matter?," Land Use Policy, Elsevier, vol. 95(C).
    10. Kihara, Job & Manda, Julius & Kimaro, Anthony & Swai, Elirehema & Mutungi, Christopher & Kinyua, Michael & Okori, Patrick & Fischer, Gundula & Kizito, Fred & Bekunda, Mateete, 2022. "Contributions of integrated soil fertility management (ISFM) to various sustainable intensification impact domains in Tanzania," Agricultural Systems, Elsevier, vol. 203(C).
    11. Jourdain C. Lokossou & Hippolyte D. Affognon & Alphonse Singbo & Michel B. Vabi & Ayoni Ogunbayo & Paul Tanzubil & Alcade C. Segnon & Geoffrey Muricho & Haile Desmae & Hakeem Ajeigbe, 2022. "Welfare impacts of improved groundnut varieties adoption and food security implications in the semi-arid areas of West Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 709-728, June.
    12. Sabrina Auci & Andrea Pronti, 2020. "Innovation in Irrigation Technologies for Sustainable Agriculture: An Endogenous Switching Analysis on Italian Farms’ Land Productivity," SEEDS Working Papers 1220, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Dec 2020.
    13. Aseres Mamo Eshetie & Eunice Matafwali & Gershom Endelani Mwalupaso & Jie Li & Aijun Liu, 2022. "Nexus of Cash Crop Production Using Improved Varieties and Household Food Security," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 34(4), pages 1803-1830, August.
    14. Felister Y. Tibamanya & Mursali A. Milanzi & Arne Henningsen, 2021. "Drivers of and Barriers to Adoption of Improved Sun- flower Varieties amongst Smallholder Farmers in Singida, Tanzania: the Double-Hurdle Approach," IFRO Working Paper 2021/03, University of Copenhagen, Department of Food and Resource Economics.
    15. Million Sileshi & Reuben Kadigi & Khamaldin Mutabazi & Stefan Sieber, 2019. "Impact of soil and water conservation practices on household vulnerability to food insecurity in eastern Ethiopia: endogenous switching regression and propensity score matching approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(4), pages 797-815, August.
    16. Varma, Poornima, 2017. "Adoption of System of Rice Intensification and its Impact on Rice Yields and Household Income: An Analysis for India," IIMA Working Papers WP2017-02-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    17. Coromaldi, Manuela & Pallante, Giacomo & Savastano, Sara, 2015. "Adoption of modern varieties, farmers' welfare and crop biodiversity: Evidence from Uganda," Ecological Economics, Elsevier, vol. 119(C), pages 346-358.
    18. Khonje, Makaiko & Manda, Julius & Alene, Arega D. & Kassie, Menale, 2015. "Analysis of Adoption and Impacts of Improved Maize Varieties in Eastern Zambia," World Development, Elsevier, vol. 66(C), pages 695-706.
    19. Abdoulaye Diagne Author-Name: Fran ois J. Cabral, 2017. "Agricultural Transformation in Senegal: Impacts of an integrated program," Working Papers PMMA 2017-09, PEP-PMMA.
    20. Alexandra Peralta & Scott M. Swinton & Songqing Jin, 2018. "The Secret to Getting Ahead Is Getting Started: Early Impacts of a Rural Development Project," Sustainability, MDPI, vol. 10(8), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:161:y:2019:i:c:p:186-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.