IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v33y2009i2p283-295.html
   My bibliography  Save this article

Computing the mean square error of unobserved components extracted by misspecified time series models

Author

Listed:
  • Harvey, Andrew C.
  • Delle Monache, Davide

Abstract

Algorithms are presented for computing mean square errors in a misspecified unobserved components model when the true model is known. It is assumed that both the true and misspecified models can be put in linear state space form. The algorithm for filtering is based on the Kalman filter while that for smoothing modifies the fixed-point smoother. Illustrations include the efficiency of the Hodrick-Prescott filter for annual flow data and the mean square error of predictions for misspecified models from the autoregressive integrated moving average class.

Suggested Citation

  • Harvey, Andrew C. & Delle Monache, Davide, 2009. "Computing the mean square error of unobserved components extracted by misspecified time series models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 283-295, February.
  • Handle: RePEc:eee:dyncon:v:33:y:2009:i:2:p:283-295
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(08)00102-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maravall, Agustin, 1985. "On Structural Time Series Models and the Characterization of Components," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(4), pages 350-355, October.
    2. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    3. Gomez, Victor, 2001. "The Use of Butterworth Filters for Trend and Cycle Estimation in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 365-373, July.
    4. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    5. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    6. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    7. Tommaso Proietti, 2005. "Forecasting and signal extraction with misspecified models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(8), pages 539-556.
    8. Morten O. Ravn & Harald Uhlig, 2002. "On adjusting the Hodrick-Prescott filter for the frequency of observations," The Review of Economics and Statistics, MIT Press, vol. 84(2), pages 371-375.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theofilakou, Nancy & Stournaras, Yannis, 2012. "Current account adjustments in OECD countries revisited: The role of the fiscal stance," Journal of Policy Modeling, Elsevier, vol. 34(5), pages 719-734.
    2. Flaig Gebhard, 2015. "Why We Should Use High Values for the Smoothing Parameter of the Hodrick-Prescott Filter," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 235(6), pages 518-538, December.
    3. Badarau-Semenescu, Cristina & Ndiaye, Cheikh Tidiane, 2010. "Politique économique et transmission des chocs dans la zone euro," L'Actualité Economique, Société Canadienne de Science Economique, vol. 86(1), pages 35-77, mars.
    4. Rodríguez, Alejandro & Ruiz, Esther, 2012. "Bootstrap prediction mean squared errors of unobserved states based on the Kalman filter with estimated parameters," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 62-74, January.
    5. repec:spr:empeco:v:53:y:2017:i:3:d:10.1007_s00181-016-1139-8 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:33:y:2009:i:2:p:283-295. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jedc .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.