IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Errors in self-reported earnings: The role of previous earnings volatility and individual characteristics

  • Akee, Randall

I report the measurement error in self-reported earnings for a developing country using a novel data set. The data set consists of two cross-sections of the Federated States of Micronesia (FSM) wage and salary sectors; additionally, a subset of the two cross-sections may be linked to create a panel. Administrative data from FSM Social Security office are matched to the FSM Census data for the wage and salary sectors. I find that the error in annual self-reported earnings is centered on zero. Additionally, I find strong evidence for mean reversion in the data suggesting non-classical measurement error. I identify the impact of prior years' earnings variability on the current reporting of earnings using administrative data on earnings histories. Prior earnings volatility strongly affects measurement error in current period. However, the effect of prior shocks diminish significantly over time--suggesting that first-differencing and fixed-effects techniques will not improve accuracy.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304387810000945
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Development Economics.

Volume (Year): 96 (2011)
Issue (Month): 2 (November)
Pages: 409-421

as
in new window

Handle: RePEc:eee:deveco:v:96:y:2011:i:2:p:409-421
Contact details of provider: Web page: http://www.elsevier.com/locate/devec

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Angrist, Joshua D. & Krueger, Alan B., 1999. "Empirical strategies in labor economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 23, pages 1277-1366 Elsevier.
  2. de Mel, Suresh & McKenzie, David J. & Woodruff, Christopher, 2009. "Measuring microenterprise profits: Must we ask how the sausage is made?," Journal of Development Economics, Elsevier, vol. 88(1), pages 19-31, January.
  3. Pischke, Jorn-Steffen, 1995. "Measurement Error and Earnings Dynamics: Some Estimates from the PSID Validation Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 305-14, July.
  4. Bound, John & Krueger, Alan B, 1991. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
  5. Gottschalk, Peter T. & Huynh, Minh, 2006. "Are Earnings Inequality and Mobility Overstated? The Impact of Non-Classical Measurement Error," IZA Discussion Papers 2327, Institute for the Study of Labor (IZA).
  6. Duncan, Greg J & Hill, Daniel H, 1985. "An Investigation of the Extent and Consequences of Measurement Error in Labor-Economic Survey Data," Journal of Labor Economics, University of Chicago Press, vol. 3(4), pages 508-32, October.
  7. John Abowd & Martha Stinson, 2011. "Estimating Measurement Error in SIPP Annual Job Earnings: A Comparison of Census Bureau Survey and SSA Administrative Data," Working Papers 11-20, Center for Economic Studies, U.S. Census Bureau.
  8. Martha Stinson, 2004. "Estimating Measurement Error in SIPP Annual Job Earnings: A Comparison of Census Survey and SSA Administrative Data," Econometric Society 2004 North American Winter Meetings 123, Econometric Society.
  9. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843 Elsevier.
  10. Francisca Antman & David J. McKenzie, 2007. "Earnings Mobility and Measurement Error: A Pseudo-Panel Approach," Economic Development and Cultural Change, University of Chicago Press, vol. 56, pages 125-161.
  11. Bound, John, et al, 1994. "Evidence on the Validity of Cross-Sectional and Longitudinal Labor Market Data," Journal of Labor Economics, University of Chicago Press, vol. 12(3), pages 345-68, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:deveco:v:96:y:2011:i:2:p:409-421. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.