IDEAS home Printed from
   My bibliography  Save this article

Modeling the transition towards a sustainable energy production in developing nations


  • Thiam, Djiby-Racine
  • Benders, René M.J.
  • Moll, Henri C.


The paper investigates how renewable technologies could promote the transition towards a sustainable energy production in developing nations. Based on two different developing nations in terms of economic, technological and institutional structure: South Africa and Senegal, we implemented scenarios in a bottom-up PowerPlan model in order to analyze the transition toward a sustainable electric production. Two scenarios have been considered: a business-as-usual (BAU) and a hybrid renewable energy (HRE) scenario. In the first scenario (BAU) we assume that the electricity demand is entirely satisfied by an increase of the investment in the current supply structure based on fossil-fuel energy source. Whereas in the renewable energy scenario, we assume 20% and 30% of the electricity supply being generated from renewable resources by 2020 and 2030 respectively. Focusing on wind and solar photovoltaic technologies, our results show the cost-competitiveness of renewable energy deployment in South Africa. In the case of Senegal, our results show that fossil-fuel resource remains the most competitive to generate electricity in the nation during the next coming years as long as environmental advantages of renewable resource are not considered. Our research indicates that in the case of a centralized electricity supply option, both a scale effect and a learning improvement could eventually strengthen the competitiveness of renewable technology deployment in developing nations.

Suggested Citation

  • Thiam, Djiby-Racine & Benders, René M.J. & Moll, Henri C., 2012. "Modeling the transition towards a sustainable energy production in developing nations," Applied Energy, Elsevier, vol. 94(C), pages 98-108.
  • Handle: RePEc:eee:appene:v:94:y:2012:i:c:p:98-108
    DOI: 10.1016/j.apenergy.2012.01.011

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. George, Mel & Banerjee, Rangan, 2011. "A methodology for analysis of impacts of grid integration of renewable energy," Energy Policy, Elsevier, vol. 39(3), pages 1265-1276, March.
    2. Thiam, Djiby-Racine, 2010. "Renewable decentralized in developing countries: Appraisal from microgrids project in Senegal," Renewable Energy, Elsevier, vol. 35(8), pages 1615-1623.
    3. Winkler, Harald, 2005. "Renewable energy policy in South Africa: policy options for renewable electricity," Energy Policy, Elsevier, vol. 33(1), pages 27-38, January.
    4. Frei, Christoph W. & Haldi, Pierre-Andre & Sarlos, Gerard, 2003. "Dynamic formulation of a top-down and bottom-up merging energy policy model," Energy Policy, Elsevier, vol. 31(10), pages 1017-1031, August.
    5. Brew-Hammond, Abeeku, 2010. "Energy access in Africa: Challenges ahead," Energy Policy, Elsevier, vol. 38(5), pages 2291-2301, May.
    6. Bhattacharyya, Subhes C., 2010. "Shaping a sustainable energy future for India: Management challenges," Energy Policy, Elsevier, vol. 38(8), pages 4173-4185, August.
    7. Wing, Ian Sue, 2006. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technologies and the cost of limiting US CO2 emissions," Energy Policy, Elsevier, vol. 34(18), pages 3847-3869, December.
    8. Pachauri, Shonali & Jiang, Leiwen, 2008. "The household energy transition in India and China," Energy Policy, Elsevier, vol. 36(11), pages 4022-4035, November.
    9. Winkler, Harald & Hughes, Alison & Haw, Mary, 2009. "Technology learning for renewable energy: Implications for South Africa's long-term mitigation scenarios," Energy Policy, Elsevier, vol. 37(11), pages 4987-4996, November.
    10. Marcotullio, Peter J. & Schulz, Niels B., 2007. "Comparison of Energy Transitions in the United States and Developing and Industrializing Economies," World Development, Elsevier, vol. 35(10), pages 1650-1683, October.
    11. van der Plas, Robert J & Hankins, Mark, 1998. "Solar electricity in Africa: a reality," Energy Policy, Elsevier, vol. 26(4), pages 295-305, March.
    12. Urban, F. & Benders, R.M.J. & Moll, H.C., 2007. "Modelling energy systems for developing countries," Energy Policy, Elsevier, vol. 35(6), pages 3473-3482, June.
    13. Bhattacharyya, Subhes C., 2006. "Energy access problem of the poor in India: Is rural electrification a remedy?," Energy Policy, Elsevier, vol. 34(18), pages 3387-3397, December.
    14. Chineke, Theo Chidiezie & Ezike, Fabian M., 2010. "Political will and collaboration for electric power reform through renewable energy in Africa," Energy Policy, Elsevier, vol. 38(1), pages 678-684, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kauw, Marco & Benders, René M.J. & Visser, Cindy, 2015. "Green methanol from hydrogen and carbon dioxide using geothermal energy and/or hydropower in Iceland or excess renewable electricity in Germany," Energy, Elsevier, vol. 90(P1), pages 208-217.
    2. Masa-Bote, D. & Castillo-Cagigal, M. & Matallanas, E. & Caamaño-Martín, E. & Gutiérrez, A. & Monasterio-Huelín, F. & Jiménez-Leube, J., 2014. "Improving photovoltaics grid integration through short time forecasting and self-consumption," Applied Energy, Elsevier, vol. 125(C), pages 103-113.
    3. Yuan, Jiahai & Xu, Yan & Hu, Zhen & Yu, Zhongfu & Liu, Jiangyan & Hu, Zhaoguang & Xu, Ming, 2012. "Managing electric power system transition in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5660-5677.
    4. repec:eee:rensus:v:74:y:2017:i:c:p:1189-1209 is not listed on IDEAS
    5. Aguilera, Roberto F. & Ripple, Ronald D., 2013. "Modeling primary energy substitution in the Asia Pacific," Applied Energy, Elsevier, vol. 111(C), pages 219-224.
    6. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    7. Groissböck, Markus & Pickl, Matthias J., 2016. "An analysis of the power market in Saudi Arabia: Retrospective cost and environmental optimization," Applied Energy, Elsevier, vol. 165(C), pages 548-558.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:94:y:2012:i:c:p:98-108. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.