IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v390y2025ics0306261925004994.html
   My bibliography  Save this article

Appliance decarbonization and its impacts on California’s energy transition

Author

Listed:
  • Sodwatana, Mo
  • Saad, Dimitri M.
  • Ahumada-Paras, Mareldi
  • Brandt, Adam R.

Abstract

Decarbonizing end-use appliances in homes and businesses is essential to meeting net-zero emissions targets. However, determining the best approach – whether through electrification or with net-zero emissions gas supplies – remains complex and highly dependent on regional demand patterns. This study explores optimal pathways for appliance decarbonization in California under various cost, technological, and regulatory constraints. The analysis was conducted using BRIDGES (Building Resilient Integrated Decarbonized Gas Electric Systems), a co-optimized gas and electric capacity expansion and dispatch model. We represented California as 16 interconnected nodes and tracked three key end-use technologies in the residential and commercial sectors for decarbonization (space heating, water heating, and kitchen ranges). We solved for five investment periods with a five-year interval from 2025 to 2045. To reach net-zero emissions by 2045 under current state plan, 92 % of water heaters and 60 % of kitchen ranges are electrified. 61 % of space heaters are electrified, with preferential electrification of coupled space heating and air conditioning. Our results show that the pace and extent of electrification vary by technology and geography, leading to between 45 % and 232 % increase in peak distribution-level demand and 1 %–17 % increase in peak system-level demand depending on the climate zone. Sensitivity analyses reveal that water heater electrification outcomes are largely insensitive to cost, technological, and regulatory constraints. However, policies around refrigerant leakage mitigation and offsets significantly influence electrification outcomes for space heating. These variations in electrification patterns lead to differing impacts on the grid, underscoring the importance of coordinated gas-electric optimization in regional decarbonization planning.

Suggested Citation

  • Sodwatana, Mo & Saad, Dimitri M. & Ahumada-Paras, Mareldi & Brandt, Adam R., 2025. "Appliance decarbonization and its impacts on California’s energy transition," Applied Energy, Elsevier, vol. 390(C).
  • Handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925004994
    DOI: 10.1016/j.apenergy.2025.125769
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925004994
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Saad, Dimitri M. & Sodwatana, Mo & Sherwin, Evan D. & Brandt, Adam R., 2025. "Energy storage in combined gas-electric energy transitions models: The case of California," Applied Energy, Elsevier, vol. 385(C).
    2. Chaudry, Modassar & Jenkins, Nick & Qadrdan, Meysam & Wu, Jianzhong, 2014. "Combined gas and electricity network expansion planning," Applied Energy, Elsevier, vol. 113(C), pages 1171-1187.
    3. Miles Lubin & Iain Dunning, 2015. "Computing in Operations Research Using Julia," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 238-248, May.
    4. Dharik S. Mallapragada & Cristian Junge & Cathy Xun Wang & Johannes Pfeifenberger & Paul L. Joskow & Richard Schmalensee, 2021. "Electricity Price Distributions in Future Renewables-Dominant Power Grids and Policy Implications," NBER Working Papers 29510, National Bureau of Economic Research, Inc.
    5. de Sisternes, Fernando J. & Jenkins, Jesse D. & Botterud, Audun, 2016. "The value of energy storage in decarbonizing the electricity sector," Applied Energy, Elsevier, vol. 175(C), pages 368-379.
    6. Borge-Diez, David & Icaza, Daniel & Trujillo-Cueva, Diego Francisco & Açıkkalp, Emin, 2022. "Renewable energy driven heat pumps decarbonization potential in existing residential buildings: Roadmap and case study of Spain," Energy, Elsevier, vol. 247(C).
    7. Khorramfar, Rahman & Mallapragada, Dharik & Amin, Saurabh, 2024. "Electric-gas infrastructure planning for deep decarbonization of energy systems," Applied Energy, Elsevier, vol. 354(PA).
    8. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    9. Sovacool, Benjamin K. & Griffiths, Steve & Kim, Jinsoo & Bazilian, Morgan, 2021. "Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Teichgraeber, Holger & Brandt, Adam R., 2019. "Clustering methods to find representative periods for the optimization of energy systems: An initial framework and comparison," Applied Energy, Elsevier, vol. 239(C), pages 1283-1293.
    11. Jack, M.W. & Mirfin, A. & Anderson, B., 2021. "The role of highly energy-efficient dwellings in enabling 100% renewable electricity," Energy Policy, Elsevier, vol. 158(C).
    12. Johnson, Eric P., 2011. "Air-source heat pump carbon footprints: HFC impacts and comparison to other heat sources," Energy Policy, Elsevier, vol. 39(3), pages 1369-1381, March.
    13. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    14. Liu, Xuetao & Hu, Yusheng & Wang, Qifan & Yao, Liang & Li, Minxia, 2021. "Energetic, environmental and economic comparative analyses of modified transcritical CO2 heat pump system to replace R134a system for home heating," Energy, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jafari, Mehdi & Korpås, Magnus & Botterud, Audun, 2020. "Power system decarbonization: Impacts of energy storage duration and interannual renewables variability," Renewable Energy, Elsevier, vol. 156(C), pages 1171-1185.
    2. Olleik, Majd & Tarhini, Hussein & Auer, Hans, 2025. "Integrating upstream natural gas and electricity planning in times of energy transition," Applied Energy, Elsevier, vol. 377(PB).
    3. Mao, Jiachen & Jafari, Mehdi & Botterud, Audun, 2022. "Planning low-carbon distributed power systems: Evaluating the role of energy storage," Energy, Elsevier, vol. 238(PA).
    4. Pavičević, Matija & Kavvadias, Konstantinos & Pukšec, Tomislav & Quoilin, Sylvain, 2019. "Comparison of different model formulations for modelling future power systems with high shares of renewables – The Dispa-SET Balkans model," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Saad, Dimitri M. & Sodwatana, Mo & Sherwin, Evan D. & Brandt, Adam R., 2025. "Energy storage in combined gas-electric energy transitions models: The case of California," Applied Energy, Elsevier, vol. 385(C).
    6. Chen, Siyuan & Li, Zheng & Li, Weiqi, 2021. "Integrating high share of renewable energy into power system using customer-sited energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    8. Marko Hočevar & Lovrenc Novak & Primož Drešar & Gašper Rak, 2022. "The Status Quo and Future of Hydropower in Slovenia," Energies, MDPI, vol. 15(19), pages 1-13, September.
    9. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    10. Steinegger, Josef & Hammer, Andreas & Wallner, Stefan & Kienberger, Thomas, 2024. "Revolutionizing heat distribution: A method for harnessing industrial waste heat with supra-regional district heating networks," Applied Energy, Elsevier, vol. 372(C).
    11. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    13. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    15. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    16. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    17. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    18. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    19. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
    20. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925004994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.