Energetic, environmental and economic comparative analyses of modified transcritical CO2 heat pump system to replace R134a system for home heating
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.120544
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dai, Baomin & Li, Minxia & Ma, Yitai, 2014. "Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery," Energy, Elsevier, vol. 64(C), pages 942-952.
- Hu, Bin & Li, Yaoyu & Cao, Feng & Xing, Ziwen, 2015. "Extremum seeking control of COP optimization for air-source transcritical CO2 heat pump water heater system," Applied Energy, Elsevier, vol. 147(C), pages 361-372.
- Zhang, Qunli & Zhang, Lin & Nie, Jinzhe & Li, Yinlong, 2017. "Techno-economic analysis of air source heat pump applied for space heating in northern China," Applied Energy, Elsevier, vol. 207(C), pages 533-542.
- Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
- Hakkaki-Fard, Ali & Eslami-Nejad, Parham & Aidoun, Zine & Ouzzane, Mohamed, 2015. "A techno-economic comparison of a direct expansion ground-source and an air-source heat pump system in Canadian cold climates," Energy, Elsevier, vol. 87(C), pages 49-59.
- Bai, Tao & Yan, Gang & Yu, Jianlin, 2019. "Thermodynamic assessment of a condenser outlet split ejector-based high temperature heat pump cycle using various low GWP refrigerants," Energy, Elsevier, vol. 179(C), pages 850-862.
- Navarro-Esbrí, J. & Cabello, R. & Torrella, E., 2005. "Experimental evaluation of the internal heat exchanger influence on a vapour compression plant energy efficiency working with R22, R134a and R407C," Energy, Elsevier, vol. 30(5), pages 621-636.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ge, T.S. & Weng, Z.C. & Huang, R. & Hu, B. & Eikevik, Trygve Magne & Dai, Y.J., 2023. "High temperature transcritical CO2 heat pump with optimized tube-in-tube heat exchanger," Energy, Elsevier, vol. 283(C).
- Guruchethan, A.M. & Reddy, Y. Siva Kumar & Maiya, M.P. & Hafner, Armin, 2024. "Experimental investigation of multi-ejector CO2 heat pump system with and without IHX," Energy, Elsevier, vol. 297(C).
- Song, Zhiying & Zhang, Yuzhe & Ji, Jie & He, Wei & Hu, Zhongting & Xuan, Qingdong, 2024. "Yearly photoelectric/thermal and economic performance comparison between CPV and FPV dual-source heat pump systems in different regions," Energy, Elsevier, vol. 289(C).
- Aljolani, Osama & Heberle, Florian & Brüggemann, Dieter, 2024. "Thermo-economic and environmental analysis of a CO2 residential air conditioning system in comparison to HFC-410A and HFC-32 in temperate and subtropical climates," Applied Energy, Elsevier, vol. 353(PA).
- Yijian He & Yufu Zheng & Jianguang Zhao & Qifei Chen & Lunyuan Zhang, 2024. "Study of a Novel Hybrid Refrigeration System, with Natural Refrigerants and Ultra-Low Carbon Emissions, for Air Conditioning," Energies, MDPI, vol. 17(4), pages 1-19, February.
- Guo, Yumin & Guo, Xinru & Wang, Jiangfeng & Li, Zhanying & Cheng, Shangfang & Wang, Shunsen, 2024. "Comprehensive analysis and optimization for a novel combined heating and power system based on self-condensing transcritical CO2 Rankine cycle driven by geothermal energy from thermodynamic, exergoeco," Energy, Elsevier, vol. 300(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Singh Gaur, Ankita & Fitiwi, Desta & Curtis, John, 2019. "Heat pumps and their role in decarbonising heating Sector: a comprehensive review," Papers WP627, Economic and Social Research Institute (ESRI).
- Zhenying Zhang & Jiaqi Wang & Meiyuan Yang & Kai Gong & Mei Yang, 2022. "Environmental and Economic Analysis of Heating Solutions for Rural Residences in China," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
- Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Guo, Zhikai & Chen, Jiangping, 2019. "Experimental energetic analysis of CO2/R41 blends in automobile air-conditioning and heat pump systems," Applied Energy, Elsevier, vol. 239(C), pages 1142-1153.
- Dai, Baomin & Liu, Xiao & Liu, Shengchun & Wang, Dabiao & Meng, Chenyang & Wang, Qi & Song, Yifan & Zou, Tonghua, 2022. "Life cycle performance evaluation of cascade-heating high temperature heat pump system for waste heat utilization: Energy consumption, emissions and financial analyses," Energy, Elsevier, vol. 261(PB).
- Rajib Uddin Rony & Huojun Yang & Sumathy Krishnan & Jongchul Song, 2019. "Recent Advances in Transcritical CO 2 (R744) Heat Pump System: A Review," Energies, MDPI, vol. 12(3), pages 1-35, January.
- Shao, Suola & Zhang, Huan & Fan, Xianwang & You, Shijun & Wang, Yaran & Wei, Shen, 2021. "Thermodynamic and economic analysis of the air source heat pump system with direct-condensation radiant heating panel," Energy, Elsevier, vol. 225(C).
- Dai, Baomin & Feng, Yining & Liu, Shengchun & Yao, Xiaole & Zhang, Jianing & Wang, Bowen & Wang, Dabiao, 2023. "Dual pressure condensation heating high temperature heat pump using eco-friendly working fluid mixtures for industrial heating processes: 4E analysis," Energy, Elsevier, vol. 283(C).
- Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Guozhong Zheng & Wentao Bu, 2018. "Review of Heating Methods for Rural Houses in China," Energies, MDPI, vol. 11(12), pages 1-18, December.
- Yuan, Zhipeng & Liu, Qi & Luo, Baojun & Li, Zhenming & Fu, Jianqin & Chen, Jingwei, 2018. "Thermodynamic analysis of different oil flooded compression enhanced vapor injection cycles," Energy, Elsevier, vol. 154(C), pages 553-560.
- Frank Bruno & Martin Belusko & Edward Halawa, 2019. "CO 2 Refrigeration and Heat Pump Systems—A Comprehensive Review," Energies, MDPI, vol. 12(15), pages 1-39, August.
- Nolting, Lars & Praktiknjo, Aaron, 2019. "Techno-economic analysis of flexible heat pump controls," Applied Energy, Elsevier, vol. 238(C), pages 1417-1433.
- Zhou, Chaohui & Ni, Long & Li, Jun & Lin, Zeri & Wang, Jun & Fu, Xuhui & Yao, Yang, 2019. "Air-source heat pump heating system with a new temperature and hydraulic-balance control strategy: A field experiment in a teaching building," Renewable Energy, Elsevier, vol. 141(C), pages 148-161.
- Soheil Kavian & Mohsen Saffari Pour & Ali Hakkaki-Fard, 2019. "Optimized Design of the District Heating System by Considering the Techno-Economic Aspects and Future Weather Projection," Energies, MDPI, vol. 12(9), pages 1-30, May.
- Wang, Wenyi & Zhao, Zhongfan & Zhou, Qun & Qiao, Yiyuan & Cao, Feng, 2021. "Model predictive control for the operation of a transcritical CO2 air source heat pump water heater," Applied Energy, Elsevier, vol. 300(C).
- Roberto Bruno & Francesco Nicoletti & Giorgio Cuconati & Stefania Perrella & Daniela Cirone, 2020. "Performance Indexes of an Air-Water Heat Pump Versus the Capacity Ratio: Analysis by Means of Experimental Data," Energies, MDPI, vol. 13(13), pages 1-19, July.
- Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
- Du, Mingxi & Wang, Xiaoge & Peng, Changhui & Shan, Yuli & Chen, Huai & Wang, Meng & Zhu, Qiuan, 2018. "Quantification and scenario analysis of CO2 emissions from the central heating supply system in China from 2006 to 2025," Applied Energy, Elsevier, vol. 225(C), pages 869-875.
- Siddiqui, Muhammad Ehtisham & Almatrafi, Eydhah & Bamasag, Ahmad & Saeed, Usman, 2022. "Adoption of CO2-based binary mixture to operate transcritical Rankine cycle in warm regions," Renewable Energy, Elsevier, vol. 199(C), pages 1372-1380.
- Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
More about this item
Keywords
Transcritical CO2; Heat pump; Vapor injection; Emission; Life cycle cost;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:229:y:2021:i:c:s0360544221007933. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.