IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v147y2015icp361-372.html
   My bibliography  Save this article

Extremum seeking control of COP optimization for air-source transcritical CO2 heat pump water heater system

Author

Listed:
  • Hu, Bin
  • Li, Yaoyu
  • Cao, Feng
  • Xing, Ziwen

Abstract

Air-source transcritical CO2 heat pump systems have found attractive applications in automobile air conditioning, regional heating and commercial water heating systems. The coefficient of performance (COP) of such systems is affected by several operational variables, such as ambient temperatures, water outlet temperature, and discharge pressure. For practical operation, it is desirable to maintain the maximum achievable efficiency or COP of such systems in real time. However, performance of model based control/optimization strategies can be quite limited by the difficulty in acquiring accurate system models due to system nonlinearity, large variations in ambient conditions and thermal load, as well as equipment variation and degradation. In this study, a self-optimizing control scheme is proposed to maximize the COP in real time by using the extremum seeking control (ESC) strategy. ESC is a class of self-optimizing control strategy that can search for the unknown or slowly varying optimum input with respect to certain performance index, which is effectively a dynamic realization of the gradient search based on a dither-demodulation scheme. For the air-source transcritical CO2 heat-pump water heater, the discharge pressure setpoint is taken as the input to the ESC controller, while the system COP is taken as the performance index, i.e. the feedback signal for the extremum seeking process. To evaluate the proposed ESC strategy, a Modelica based dynamic simulation model is developed for the plant to perform the simulation study. Simulations are conducted for several scenarios: a fixed operation condition, change of the water outlet temperature setpoint, change of ambient condition, and changes of both the ambient temperature and water outlet temperature setpoint. For all simulation cases, the water inlet temperature is fixed at 12°C, the ambient temperature is assumed to range from −15°C to −35°C, while the water outlet temperature ranges from 55°C to 80°C. Simulation results show that ESC is able to search and even track both fixed and slowly varying optimum COP without need for system model. Significant recovery of energy efficiency can thus be obtained for practical operation of such systems in a nearly model-free fashion.

Suggested Citation

  • Hu, Bin & Li, Yaoyu & Cao, Feng & Xing, Ziwen, 2015. "Extremum seeking control of COP optimization for air-source transcritical CO2 heat pump water heater system," Applied Energy, Elsevier, vol. 147(C), pages 361-372.
  • Handle: RePEc:eee:appene:v:147:y:2015:i:c:p:361-372
    DOI: 10.1016/j.apenergy.2015.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915002949
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yokoyama, Ryohei & Shimizu, Takeshi & Ito, Koichi & Takemura, Kazuhisa, 2007. "Influence of ambient temperatures on performance of a CO2 heat pump water heating system," Energy, Elsevier, vol. 32(4), pages 388-398.
    2. Aprea, Ciro & Maiorino, Angelo, 2009. "Heat rejection pressure optimization for a carbon dioxide split system: An experimental study," Applied Energy, Elsevier, vol. 86(11), pages 2373-2380, November.
    3. Wang, Jiangfeng & Sun, Zhixin & Dai, Yiping & Ma, Shaolin, 2010. "Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network," Applied Energy, Elsevier, vol. 87(4), pages 1317-1324, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wenyi & Li, Yaoyu, 2019. "Intermediate pressure optimization for two-stage air-source heat pump with flash tank cycle vapor injection via extremum seeking," Applied Energy, Elsevier, vol. 238(C), pages 612-626.
    2. Martin Belusko & Raymond Liddle & Alemu Alemu & Edward Halawa & Frank Bruno, 2019. "Performance Evaluation of a CO 2 Refrigeration System Enhanced with a Dew Point Cooler," Energies, MDPI, vol. 12(6), pages 1-22, March.
    3. Frank Bruno & Martin Belusko & Edward Halawa, 2019. "CO 2 Refrigeration and Heat Pump Systems—A Comprehensive Review," Energies, MDPI, vol. 12(15), pages 1-39, August.
    4. Singh Gaur, Ankita & Fitiwi, Desta & Curtis, John, 2019. "Heat pumps and their role in decarbonising heating Sector: a comprehensive review," Papers WP627, Economic and Social Research Institute (ESRI).
    5. Wang, Wenyi & Zhao, Zhongfan & Zhou, Qun & Qiao, Yiyuan & Cao, Feng, 2021. "Model predictive control for the operation of a transcritical CO2 air source heat pump water heater," Applied Energy, Elsevier, vol. 300(C).
    6. Roberto Bruno & Francesco Nicoletti & Giorgio Cuconati & Stefania Perrella & Daniela Cirone, 2020. "Performance Indexes of an Air-Water Heat Pump Versus the Capacity Ratio: Analysis by Means of Experimental Data," Energies, MDPI, vol. 13(13), pages 1-19, July.
    7. Hongzeng Ji & Jinchen Pei & Jingyang Cai & Chen Ding & Fen Guo & Yichun Wang, 2023. "Review of Recent Advances in Transcritical CO 2 Heat Pump and Refrigeration Cycles and Their Development in the Vehicle Field," Energies, MDPI, vol. 16(10), pages 1-21, May.
    8. Xu, Yingjie & Mao, Chengbin & Huang, Yuangong & Shen, Xi & Xu, Xiaoxiao & Chen, Guangming, 2021. "Performance evaluation and multi-objective optimization of a low-temperature CO2 heat pump water heater based on artificial neural network and new economic analysis," Energy, Elsevier, vol. 216(C).
    9. Okasha, Ahmed & Müller, Norbert & Deb, Kalyanmoy, 2022. "Bi-objective optimization of transcritical CO2 heat pump systems," Energy, Elsevier, vol. 247(C).
    10. Xiufang Liu & Changhai Liu & Ze Zhang & Liang Chen & Yu Hou, 2017. "Experimental Study on the Performance of Water Source Trans-Critical CO 2 Heat Pump Water Heater," Energies, MDPI, vol. 10(6), pages 1-14, June.
    11. Liang, Youcai & Al-Tameemi, Mohammed & Yu, Zhibin, 2018. "Investigation of a gas-fuelled water heater based on combined power and heat pump cycles," Applied Energy, Elsevier, vol. 212(C), pages 1476-1488.
    12. Liu, Xuetao & Hu, Yusheng & Wang, Qifan & Yao, Liang & Li, Minxia, 2021. "Energetic, environmental and economic comparative analyses of modified transcritical CO2 heat pump system to replace R134a system for home heating," Energy, Elsevier, vol. 229(C).
    13. Tsamos, K.M. & Ge, Y.T. & Santosa, I.D.M.C. & Tassou, S.A., 2017. "Experimental investigation of gas cooler/condenser designs and effects on a CO2 booster system," Applied Energy, Elsevier, vol. 186(P3), pages 470-479.
    14. Rajib Uddin Rony & Huojun Yang & Sumathy Krishnan & Jongchul Song, 2019. "Recent Advances in Transcritical CO 2 (R744) Heat Pump System: A Review," Energies, MDPI, vol. 12(3), pages 1-35, January.
    15. Zhang, Qunli & Zhang, Lin & Nie, Jinzhe & Li, Yinlong, 2017. "Techno-economic analysis of air source heat pump applied for space heating in northern China," Applied Energy, Elsevier, vol. 207(C), pages 533-542.
    16. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Guo, Zhikai & Chen, Jiangping, 2019. "Experimental energetic analysis of CO2/R41 blends in automobile air-conditioning and heat pump systems," Applied Energy, Elsevier, vol. 239(C), pages 1142-1153.
    17. Ignacio López Paniagua & Ángel Jiménez Álvaro & Javier Rodríguez Martín & Celina González Fernández & Rafael Nieto Carlier, 2019. "Comparison of Transcritical CO 2 and Conventional Refrigerant Heat Pump Water Heaters for Domestic Applications," Energies, MDPI, vol. 12(3), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung, Hyun Joon & Baek, Changhyun & Kang, Hoon & Kim, Dongwoo & Kim, Yongchan, 2018. "Performance evaluation of a gas injection CO2 heat pump according to operating parameters in extreme heating and cooling conditions," Energy, Elsevier, vol. 154(C), pages 337-345.
    2. Ohkura, Masashi & Yokoyama, Ryohei & Nakamata, Takuya & Wakui, Tetsuya, 2015. "Numerical analysis on performance enhancement of a CO2 heat pump water heating system by extracting tepid water," Energy, Elsevier, vol. 87(C), pages 435-447.
    3. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    4. Guo, Jiangfeng, 2016. "Design analysis of supercritical carbon dioxide recuperator," Applied Energy, Elsevier, vol. 164(C), pages 21-27.
    5. Pavelka, Michal & Klika, Václav & Vágner, Petr & Maršík, František, 2015. "Generalization of exergy analysis," Applied Energy, Elsevier, vol. 137(C), pages 158-172.
    6. Wang, Wenyi & Zhao, Zhongfan & Zhou, Qun & Qiao, Yiyuan & Cao, Feng, 2021. "Model predictive control for the operation of a transcritical CO2 air source heat pump water heater," Applied Energy, Elsevier, vol. 300(C).
    7. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    8. Sun, Lei & Liu, Tianyuan & Wang, Ding & Huang, Chengming & Xie, Yonghui, 2022. "Deep learning method based on graph neural network for performance prediction of supercritical CO2 power systems," Applied Energy, Elsevier, vol. 324(C).
    9. Alphonsus, Ephrem Ryan & Abdullah, Mohammad Omar, 2016. "A review on the applications of programmable logic controllers (PLCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1185-1205.
    10. Yari, Mortaza & Mahmoudi, S.M.S., 2011. "Thermodynamic analysis and optimization of novel ejector-expansion TRCC (transcritical CO2) cascade refrigeration cycles (Novel transcritical CO2 cycle)," Energy, Elsevier, vol. 36(12), pages 6839-6850.
    11. Guo, Hao & Gong, Maoqiong & Qin, Xiaoyu, 2019. "Performance analysis of a modified subcritical zeotropic mixture recuperative high-temperature heat pump," Applied Energy, Elsevier, vol. 237(C), pages 338-352.
    12. Li, Xiaoxiao & Duniam, Sam & Gurgenci, Hal & Guan, Zhiqiang & Veeraragavan, Anand, 2017. "Full scale experimental study of a small natural draft dry cooling tower for concentrating solar thermal power plant," Applied Energy, Elsevier, vol. 193(C), pages 15-27.
    13. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    14. Li, Tailu & Fu, Wencheng & Zhu, Jialing, 2014. "An integrated optimization for organic Rankine cycle based on entransy theory and thermodynamics," Energy, Elsevier, vol. 72(C), pages 561-573.
    15. Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
    16. Battisti, Felipe G. & Cardemil, José M. & da Silva, Alexandre K., 2016. "A multivariable optimization of a Brayton power cycle operating with CO2 as working fluid," Energy, Elsevier, vol. 112(C), pages 908-916.
    17. Mondal, Subha & De, Sudipta, 2015. "CO2 based power cycle with multi-stage compression and intercooling for low temperature waste heat recovery," Energy, Elsevier, vol. 90(P1), pages 1132-1143.
    18. Shu, Gequn & Shi, Lingfeng & Tian, Hua & Deng, Shuai & Li, Xiaoya & Chang, Liwen, 2017. "Configurations selection maps of CO2-based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat," Applied Energy, Elsevier, vol. 186(P3), pages 423-435.
    19. Kun-Hsien Lu & Hsiao-Wei D. Chiang & Pei-Jen Wang, 2022. "Sensitivity Analysis of Transcritical CO 2 Cycle Performance Regarding Isentropic Efficiencies of Turbomachinery for Low Temperature Heat Sources," Energies, MDPI, vol. 15(23), pages 1-18, November.
    20. Mondal, Subha & De, Sudipta, 2015. "Transcritical CO2 power cycle – Effects of regenerative heating using turbine bleed gas at intermediate pressure," Energy, Elsevier, vol. 87(C), pages 95-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:147:y:2015:i:c:p:361-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.