Some searches may not work properly. We apologize for the inconvenience.
My bibliography Save this articleExperimental Study on the Performance of Water Source Trans-Critical CO 2 Heat Pump Water Heater
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ohkura, Masashi & Yokoyama, Ryohei & Nakamata, Takuya & Wakui, Tetsuya, 2015. "Numerical analysis on performance enhancement of a CO2 heat pump water heating system by extracting tepid water," Energy, Elsevier, vol. 87(C), pages 435-447.
- Yokoyama, Ryohei & Wakui, Tetsuya & Kamakari, Junya & Takemura, Kazuhisa, 2010. "Performance analysis of a CO2 heat pump water heating system under a daily change in a standardized demand," Energy, Elsevier, vol. 35(2), pages 718-728.
- Hu, Bin & Li, Yaoyu & Cao, Feng & Xing, Ziwen, 2015. "Extremum seeking control of COP optimization for air-source transcritical CO2 heat pump water heater system," Applied Energy, Elsevier, vol. 147(C), pages 361-372.
- Zhang, Jian-Fei & Qin, Yan & Wang, Chi-Chuan, 2015. "Review on CO2 heat pump water heater for residential use in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1383-1391.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fan Feng & Ze Zhang & Xiufang Liu & Changhai Liu & Yu Hou, 2020. "The Influence of Internal Heat Exchanger on the Performance of Transcritical CO 2 Water Source Heat Pump Water Heater," Energies, MDPI, vol. 13(7), pages 1-14, April.
- Xiang Gou & Shian Liu & Yang Fu & Qiyan Zhang & Saima Iram & Yingfan Liu, 2018. "Experimental Study on the Performance of a Household Dual-Source Heat Pump Water Heater," Energies, MDPI, vol. 11(10), pages 1-18, October.
- Ignacio López Paniagua & Ángel Jiménez Álvaro & Javier Rodríguez Martín & Celina González Fernández & Rafael Nieto Carlier, 2019. "Comparison of Transcritical CO 2 and Conventional Refrigerant Heat Pump Water Heaters for Domestic Applications," Energies, MDPI, vol. 12(3), pages 1-17, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ignacio López Paniagua & Ángel Jiménez Álvaro & Javier Rodríguez Martín & Celina González Fernández & Rafael Nieto Carlier, 2019. "Comparison of Transcritical CO 2 and Conventional Refrigerant Heat Pump Water Heaters for Domestic Applications," Energies, MDPI, vol. 12(3), pages 1-17, February.
- Xu, Yingjie & Mao, Chengbin & Huang, Yuangong & Shen, Xi & Xu, Xiaoxiao & Chen, Guangming, 2021. "Performance evaluation and multi-objective optimization of a low-temperature CO2 heat pump water heater based on artificial neural network and new economic analysis," Energy, Elsevier, vol. 216(C).
- Wang, Wenyi & Zhao, Zhongfan & Zhou, Qun & Qiao, Yiyuan & Cao, Feng, 2021. "Model predictive control for the operation of a transcritical CO2 air source heat pump water heater," Applied Energy, Elsevier, vol. 300(C).
- Wakui, Tetsuya & Hashiguchi, Moe & Sawada, Kento & Yokoyama, Ryohei, 2019. "Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks," Energy, Elsevier, vol. 170(C), pages 1228-1248.
- Singh Gaur, Ankita & Fitiwi, Desta & Curtis, John, 2019. "Heat pumps and their role in decarbonising heating Sector: a comprehensive review," Papers WP627, Economic and Social Research Institute (ESRI).
- Wu, Di & Hu, Bin & Wang, R.Z., 2021. "Vapor compression heat pumps with pure Low-GWP refrigerants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Chen, J.F. & Dai, Y.J. & Wang, R.Z., 2016. "Experimental and theoretical study on a solar assisted CO2 heat pump for space heating," Renewable Energy, Elsevier, vol. 89(C), pages 295-304.
- Wakui, Tetsuya & Sawada, Kento & Yokoyama, Ryohei & Aki, Hirohisa, 2019. "Predictive management for energy supply networks using photovoltaics, heat pumps, and battery by two-stage stochastic programming and rule-based control," Energy, Elsevier, vol. 179(C), pages 1302-1319.
- Frank Bruno & Martin Belusko & Edward Halawa, 2019. "CO 2 Refrigeration and Heat Pump Systems—A Comprehensive Review," Energies, MDPI, vol. 12(15), pages 1-39, August.
- Roberto Bruno & Francesco Nicoletti & Giorgio Cuconati & Stefania Perrella & Daniela Cirone, 2020. "Performance Indexes of an Air-Water Heat Pump Versus the Capacity Ratio: Analysis by Means of Experimental Data," Energies, MDPI, vol. 13(13), pages 1-19, July.
- Sheikholeslami, M. & Ganji, D.D., 2016. "Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies," Energy, Elsevier, vol. 116(P1), pages 341-352.
- Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
- Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Wakui, Tetsuya & Akai, Kazuki & Yokoyama, Ryohei, 2022. "Shrinking and receding horizon approaches for long-term operational planning of energy storage and supply systems," Energy, Elsevier, vol. 239(PD).
- Yang, Zhao & Wu, Xi, 2013. "Retrofits and options for the alternatives to HCFC-22," Energy, Elsevier, vol. 59(C), pages 1-21.
- Liang, Youcai & Al-Tameemi, Mohammed & Yu, Zhibin, 2018. "Investigation of a gas-fuelled water heater based on combined power and heat pump cycles," Applied Energy, Elsevier, vol. 212(C), pages 1476-1488.
- Xiang Gou & Yang Fu & Imran Ali Shah & Yamei Li & Guoyou Xu & Yue Yang & Enyu Wang & Liansheng Liu & Jinxiang Wu, 2016. "Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS," Energies, MDPI, vol. 9(12), pages 1-16, December.
- Zhang, Jian-Fei & Qin, Yan & Wang, Chi-Chuan, 2015. "Review on CO2 heat pump water heater for residential use in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1383-1391.
- Xu, Xiao Xiao & Chen, Guang Ming & Tang, Li Ming & Zhu, Zhi Jiang, 2012. "Experimental investigation on performance of transcritical CO2 heat pump system with ejector under optimum high-side pressure," Energy, Elsevier, vol. 44(1), pages 870-877.
- Okasha, Ahmed & Müller, Norbert & Deb, Kalyanmoy, 2022. "Bi-objective optimization of transcritical CO2 heat pump systems," Energy, Elsevier, vol. 247(C).
More about this item
Keywords
trans-critical CO2 cycle; heat pump; optimal discharge pressure; COP;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:810-:d:101452. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.