IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v170y2019icp1228-1248.html
   My bibliography  Save this article

Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks

Author

Listed:
  • Wakui, Tetsuya
  • Hashiguchi, Moe
  • Sawada, Kento
  • Yokoyama, Ryohei

Abstract

A two-stage optimization approach based on an artificial immune system (AIS) and mixed-integer linear programming (MILP) was developed to efficiently solve large-scale structural design problems of energy supply networks and obtain multiple and diverse design candidates. By focusing on a hierarchical relationship between design and operation variables, a structural design problem, formulated using MILP, is decomposed into an upper-level design problem and a lower-level operation problem. The upper-level design problem is solved using an AIS, in which multiple and diverse sets of suboptimal solutions are searched in a short computation time. In the lower-level optimization, design variables are fixed at the values searched in the upper-level optimization and operation variables are optimized using MILP. Moreover, the lower-level optimization for multiple sets of design variables is separately conducted using parallel computing. The developed approach was applied to the structural design of an energy supply network, consisting of candidates of cogeneration units and heat pump water heating units under power and heat interchange, for a housing complex with four dwellings. The diversity and energy-saving performance of multiple design candidates were analyzed. The computational efficiency was also demonstrated in comparison to the results obtained using only a commercial MILP solver.

Suggested Citation

  • Wakui, Tetsuya & Hashiguchi, Moe & Sawada, Kento & Yokoyama, Ryohei, 2019. "Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks," Energy, Elsevier, vol. 170(C), pages 1228-1248.
  • Handle: RePEc:eee:energy:v:170:y:2019:i:c:p:1228-1248
    DOI: 10.1016/j.energy.2018.12.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218324708
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.12.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wakui, Tetsuya & Yokoyama, Ryohei & Shimizu, Ken-ichi, 2010. "Suitable operational strategy for power interchange operation using multiple residential SOFC (solid oxide fuel cell) cogeneration systems," Energy, Elsevier, vol. 35(2), pages 740-750.
    2. Holjevac, Ninoslav & Capuder, Tomislav & Kuzle, Igor, 2015. "Adaptive control for evaluation of flexibility benefits in microgrid systems," Energy, Elsevier, vol. 92(P3), pages 487-504.
    3. Fazlollahi, Samira & Becker, Gwenaelle & Ashouri, Araz & Maréchal, François, 2015. "Multi-objective, multi-period optimization of district energy systems: IV – A case study," Energy, Elsevier, vol. 84(C), pages 365-381.
    4. Casisi, M. & Pinamonti, P. & Reini, M., 2009. "Optimal lay-out and operation of combined heat & power (CHP) distributed generation systems," Energy, Elsevier, vol. 34(12), pages 2175-2183.
    5. Bracco, Stefano & Dentici, Gabriele & Siri, Silvia, 2016. "DESOD: a mathematical programming tool to optimally design a distributed energy system," Energy, Elsevier, vol. 100(C), pages 298-309.
    6. Yokoyama, Ryohei & Wakui, Tetsuya & Kamakari, Junya & Takemura, Kazuhisa, 2010. "Performance analysis of a CO2 heat pump water heating system under a daily change in a standardized demand," Energy, Elsevier, vol. 35(2), pages 718-728.
    7. Stojiljković, Mirko M., 2017. "Bi-level multi-objective fuzzy design optimization of energy supply systems aided by problem-specific heuristics," Energy, Elsevier, vol. 137(C), pages 1231-1251.
    8. Soroudi, Alireza & Ehsan, Mehdi, 2010. "A distribution network expansion planning model considering distributed generation options and techo-economical issues," Energy, Elsevier, vol. 35(8), pages 3364-3374.
    9. Mashayekh, Salman & Stadler, Michael & Cardoso, Gonçalo & Heleno, Miguel, 2017. "A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids," Applied Energy, Elsevier, vol. 187(C), pages 154-168.
    10. Wakui, Tetsuya & Yokoyama, Ryohei, 2014. "Optimal structural design of residential cogeneration systems in consideration of their operating restrictions," Energy, Elsevier, vol. 64(C), pages 719-733.
    11. Li, Bei & Roche, Robin & Paire, Damien & Miraoui, Abdellatif, 2018. "Optimal sizing of distributed generation in gas/electricity/heat supply networks," Energy, Elsevier, vol. 151(C), pages 675-688.
    12. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2018. "Thermoeconomic cost allocation in simple trigeneration systems including thermal energy storage," Energy, Elsevier, vol. 153(C), pages 170-184.
    13. Murugan, S. & Horák, Bohumil, 2016. "A review of micro combined heat and power systems for residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 144-162.
    14. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei, 2016. "Optimal structural design of residential power and heat supply devices in consideration of operational and capital recovery constraints," Applied Energy, Elsevier, vol. 163(C), pages 118-133.
    15. Li, Bei & Roche, Robin & Miraoui, Abdellatif, 2017. "Microgrid sizing with combined evolutionary algorithm and MILP unit commitment," Applied Energy, Elsevier, vol. 188(C), pages 547-562.
    16. Schütz, Thomas & Schraven, Markus Hans & Remy, Sebastian & Granacher, Julia & Kemetmüller, Dominik & Fuchs, Marcus & Müller, Dirk, 2017. "Optimal design of energy conversion units for residential buildings considering German market conditions," Energy, Elsevier, vol. 139(C), pages 895-915.
    17. Maroufmashat, Azadeh & Elkamel, Ali & Fowler, Michael & Sattari, Sourena & Roshandel, Ramin & Hajimiragha, Amir & Walker, Sean & Entchev, Evgueniy, 2015. "Modeling and optimization of a network of energy hubs to improve economic and emission considerations," Energy, Elsevier, vol. 93(P2), pages 2546-2558.
    18. Ondeck, Abigail & Edgar, Thomas F. & Baldea, Michael, 2017. "A multi-scale framework for simultaneous optimization of the design and operating strategy of residential CHP systems," Applied Energy, Elsevier, vol. 205(C), pages 1495-1511.
    19. Elsido, Cristina & Bischi, Aldo & Silva, Paolo & Martelli, Emanuele, 2017. "Two-stage MINLP algorithm for the optimal synthesis and design of networks of CHP units," Energy, Elsevier, vol. 121(C), pages 403-426.
    20. Carvalho, Monica & Serra, Luis Maria & Lozano, Miguel Angel, 2011. "Optimal synthesis of trigeneration systems subject to environmental constraints," Energy, Elsevier, vol. 36(6), pages 3779-3790.
    21. Ma, Tengfei & Wu, Junyong & Hao, Liangliang & Lee, Wei-Jen & Yan, Huaguang & Li, Dezhi, 2018. "The optimal structure planning and energy management strategies of smart multi energy systems," Energy, Elsevier, vol. 160(C), pages 122-141.
    22. Wakui, Tetsuya & Sawada, Kento & Yokoyama, Ryohei & Aki, Hirohisa, 2018. "Predictive management of cogeneration-based energy supply networks using two-stage multi-objective optimization," Energy, Elsevier, vol. 162(C), pages 1269-1286.
    23. Schütz, Thomas & Hu, Xiaolin & Fuchs, Marcus & Müller, Dirk, 2018. "Optimal design of decentralized energy conversion systems for smart microgrids using decomposition methods," Energy, Elsevier, vol. 156(C), pages 250-263.
    24. Wakui, Tetsuya & Kinoshita, Takahiro & Yokoyama, Ryohei, 2014. "A mixed-integer linear programming approach for cogeneration-based residential energy supply networks with power and heat interchanges," Energy, Elsevier, vol. 68(C), pages 29-46.
    25. Aki, Hirohisa & Wakui, Tetsuya & Yokoyama, Ryohei & Sawada, Kento, 2018. "Optimal management of multiple heat sources in a residential area by an energy management system," Energy, Elsevier, vol. 153(C), pages 1048-1060.
    26. Kopanos, Georgios M. & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "Energy production planning of a network of micro combined heat and power generators," Applied Energy, Elsevier, vol. 102(C), pages 1522-1534.
    27. Orehounig, Kristina & Evins, Ralph & Dorer, Viktor, 2015. "Integration of decentralized energy systems in neighbourhoods using the energy hub approach," Applied Energy, Elsevier, vol. 154(C), pages 277-289.
    28. Sanseverino, Eleonora Riva & Di Silvestre, Maria Luisa & Ippolito, Mariano Giuseppe & De Paola, Alessandra & Lo Re, Giuseppe, 2011. "An execution, monitoring and replanning approach for optimal energy management in microgrids," Energy, Elsevier, vol. 36(5), pages 3429-3436.
    29. Zhang, Jian-Fei & Qin, Yan & Wang, Chi-Chuan, 2015. "Review on CO2 heat pump water heater for residential use in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1383-1391.
    30. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei & Aki, Hirohisa, 2016. "Operation management of residential energy-supplying networks based on optimization approaches," Applied Energy, Elsevier, vol. 183(C), pages 340-357.
    31. Weber, C. & Shah, N., 2011. "Optimisation based design of a district energy system for an eco-town in the United Kingdom," Energy, Elsevier, vol. 36(2), pages 1292-1308.
    32. Schütz, Thomas & Schraven, Markus Hans & Fuchs, Marcus & Remmen, Peter & Müller, Dirk, 2018. "Comparison of clustering algorithms for the selection of typical demand days for energy system synthesis," Renewable Energy, Elsevier, vol. 129(PA), pages 570-582.
    33. Mehleri, Eugenia D. & Sarimveis, Haralambos & Markatos, Nikolaos C. & Papageorgiou, Lazaros G., 2012. "A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level," Energy, Elsevier, vol. 44(1), pages 96-104.
    34. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    35. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Impact analysis of sampling time interval and battery installation on optimal operational planning of residential cogeneration systems without electric power export," Energy, Elsevier, vol. 81(C), pages 120-136.
    36. Yang, Yun & Zhang, Shijie & Xiao, Yunhan, 2015. "Optimal design of distributed energy resource systems coupled with energy distribution networks," Energy, Elsevier, vol. 85(C), pages 433-448.
    37. Wolisz, Henryk & Schütz, Thomas & Blanke, Tobias & Hagenkamp, Markus & Kohrn, Markus & Wesseling, Mark & Müller, Dirk, 2017. "Cost optimal sizing of smart buildings' energy system components considering changing end-consumer electricity markets," Energy, Elsevier, vol. 137(C), pages 715-728.
    38. Hemmati, S. & Ghaderi, S.F. & Ghazizadeh, M.S., 2018. "Sustainable energy hub design under uncertainty using Benders decomposition method," Energy, Elsevier, vol. 143(C), pages 1029-1047.
    39. Sachs, Julia & Sawodny, Oliver, 2016. "Multi-objective three stage design optimization for island microgrids," Applied Energy, Elsevier, vol. 165(C), pages 789-800.
    40. Hirvonen, Janne & Kayo, Genku & Hasan, Ala & Sirén, Kai, 2014. "Local sharing of cogeneration energy through individually prioritized controls for increased on-site energy utilization," Applied Energy, Elsevier, vol. 135(C), pages 350-363.
    41. Buoro, D. & Casisi, M. & De Nardi, A. & Pinamonti, P. & Reini, M., 2013. "Multicriteria optimization of a distributed energy supply system for an industrial area," Energy, Elsevier, vol. 58(C), pages 128-137.
    42. Bracco, Stefano & Dentici, Gabriele & Siri, Silvia, 2013. "Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area," Energy, Elsevier, vol. 55(C), pages 1014-1024.
    43. Mirko M. Stojiljković & Mladen M. Stojiljković & Bratislav D. Blagojević, 2014. "Multi-Objective Combinatorial Optimization of Trigeneration Plants Based on Metaheuristics," Energies, MDPI, vol. 7(12), pages 1-28, December.
    44. Soroudi, Alireza & Ehsan, Mehdi & Zareipour, Hamidreza, 2011. "A practical eco-environmental distribution network planning model including fuel cells and non-renewable distributed energy resources," Renewable Energy, Elsevier, vol. 36(1), pages 179-188.
    45. Soheyli, Saman & Shafiei Mayam, Mohamad Hossein & Mehrjoo, Mehri, 2016. "Modeling a novel CCHP system including solar and wind renewable energy resources and sizing by a CC-MOPSO algorithm," Applied Energy, Elsevier, vol. 184(C), pages 375-395.
    46. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2016. "Multi-objective optimization of a distributed energy network integrated with heating interchange," Energy, Elsevier, vol. 109(C), pages 353-364.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changrong Liu & Hanqing Wang & Zhiqiang Liu & Zhiyong Wang & Sheng Yang, 2021. "Research on a Bi-Level Collaborative Optimization Method for Planning and Operation of Multi-Energy Complementary Systems," Energies, MDPI, vol. 14(23), pages 1-20, November.
    2. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2021. "Structural design of distributed energy networks by a hierarchical combination of variable- and constraint-based decomposition methods," Energy, Elsevier, vol. 224(C).
    3. Dai, Wei & Yang, Zhifang & Yu, Juan & Cui, Wei & Li, Wenyuan & Li, Jinghua & Liu, Hui, 2021. "Economic dispatch of interconnected networks considering hidden flexibility," Energy, Elsevier, vol. 223(C).
    4. Wakui, Tetsuya & Sawada, Kento & Yokoyama, Ryohei & Aki, Hirohisa, 2019. "Predictive management for energy supply networks using photovoltaics, heat pumps, and battery by two-stage stochastic programming and rule-based control," Energy, Elsevier, vol. 179(C), pages 1302-1319.
    5. Yuan, Guanghui & Yang, Weixin, 2019. "Study on optimization of economic dispatching of electric power system based on Hybrid Intelligent Algorithms (PSO and AFSA)," Energy, Elsevier, vol. 183(C), pages 926-935.
    6. Kong, Xiangyu & Liu, Dehong & Xiao, Jie & Wang, Chengshan, 2019. "A multi-agent optimal bidding strategy in microgrids based on artificial immune system," Energy, Elsevier, vol. 189(C).
    7. Xia, Tian & Huang, Wujing & Lu, Xi & Zhang, Ning & Kang, Chongqing, 2020. "Planning district multiple energy systems considering year-round operation," Energy, Elsevier, vol. 213(C).
    8. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2020. "A near-optimal solution method for coordinated operation planning problem of power- and heat-interchange networks using column generation-based decomposition," Energy, Elsevier, vol. 197(C).
    9. Li, Haoran & Zhang, Chenghui & Sun, Bo, 2022. "Deep integration planning of sustainable energies in district energy system and distributed energy station," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2021. "Structural design of distributed energy networks by a hierarchical combination of variable- and constraint-based decomposition methods," Energy, Elsevier, vol. 224(C).
    2. Wakui, Tetsuya & Sawada, Kento & Yokoyama, Ryohei & Aki, Hirohisa, 2019. "Predictive management for energy supply networks using photovoltaics, heat pumps, and battery by two-stage stochastic programming and rule-based control," Energy, Elsevier, vol. 179(C), pages 1302-1319.
    3. Wakui, Tetsuya & Sawada, Kento & Yokoyama, Ryohei & Aki, Hirohisa, 2018. "Predictive management of cogeneration-based energy supply networks using two-stage multi-objective optimization," Energy, Elsevier, vol. 162(C), pages 1269-1286.
    4. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2020. "A near-optimal solution method for coordinated operation planning problem of power- and heat-interchange networks using column generation-based decomposition," Energy, Elsevier, vol. 197(C).
    5. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    6. Wakui, Tetsuya & Yokoyama, Ryohei, 2014. "Optimal structural design of residential cogeneration systems in consideration of their operating restrictions," Energy, Elsevier, vol. 64(C), pages 719-733.
    7. Urban, Kristof L. & Scheller, Fabian & Bruckner, Thomas, 2021. "Suitability assessment of models in the industrial energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Wakui, Tetsuya & Kinoshita, Takahiro & Yokoyama, Ryohei, 2014. "A mixed-integer linear programming approach for cogeneration-based residential energy supply networks with power and heat interchanges," Energy, Elsevier, vol. 68(C), pages 29-46.
    9. Schütz, Thomas & Schraven, Markus Hans & Fuchs, Marcus & Remmen, Peter & Müller, Dirk, 2018. "Comparison of clustering algorithms for the selection of typical demand days for energy system synthesis," Renewable Energy, Elsevier, vol. 129(PA), pages 570-582.
    10. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
    11. Yokoyama, Ryohei & Shinano, Yuji & Taniguchi, Syusuke & Wakui, Tetsuya, 2019. "Search for K-best solutions in optimal design of energy supply systems by an extended MILP hierarchical branch and bound method," Energy, Elsevier, vol. 184(C), pages 45-57.
    12. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei & Aki, Hirohisa, 2016. "Operation management of residential energy-supplying networks based on optimization approaches," Applied Energy, Elsevier, vol. 183(C), pages 340-357.
    14. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimising urban energy systems: Simultaneous system sizing, operation and district heating network layout," Energy, Elsevier, vol. 116(P1), pages 619-636.
    15. Mavromatidis, Georgios & Petkov, Ivalin, 2021. "MANGO: A novel optimization model for the long-term, multi-stage planning of decentralized multi-energy systems," Applied Energy, Elsevier, vol. 288(C).
    16. Gabrielli, Paolo & Gazzani, Matteo & Mazzotti, Marco, 2018. "Electrochemical conversion technologies for optimal design of decentralized multi-energy systems: Modeling framework and technology assessment," Applied Energy, Elsevier, vol. 221(C), pages 557-575.
    17. Mashayekh, Salman & Stadler, Michael & Cardoso, Gonçalo & Heleno, Miguel, 2017. "A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids," Applied Energy, Elsevier, vol. 187(C), pages 154-168.
    18. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2017. "Benefit allocation for distributed energy network participants applying game theory based solutions," Energy, Elsevier, vol. 119(C), pages 384-391.
    19. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
    20. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing & Lao, Changshi, 2017. "Profit allocation analysis among the distributed energy network participants based on Game-theory," Energy, Elsevier, vol. 118(C), pages 783-794.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:170:y:2019:i:c:p:1228-1248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.