IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v147y2018icp1153-1164.html
   My bibliography  Save this article

Application of adjoint sensitivity analysis method to supercritical CO2 power cycle optimization

Author

Listed:
  • Son, Seongmin
  • Lee, Jeong Ik

Abstract

Adjoint sensitivity based optimization methodology for a supercritical CO2 (S-CO2) cycle is developed in this paper. The adjoint sensitivity analysis method (adjoint method) is a way to analyze sensitivity very quickly. By using the developed methodology, the optimal state variation due to the change of cycle parameters is analyzed. The S-CO2 recompression Brayton cycle is used for an example case for the demonstration of the proposed method. The independence of time consumption for the developed adjoint sensitivity analysis method to the number of optimized variables is demonstrated. For the test case, the developed algorithm shows the ability to make the design parameters converge with a precision of 10−6 by more than ten times faster for calculating the sensitivity than conventional optimization methods. Validation of the obtained optimal point is also included in the paper. For the validation, a response surface analysis is performed to visualize the pathway during the iteration for optimization. It is very challenging to carry out the optimization having the same precision using a brute force algorithm or a probability-based optimization algorithm since the number of variables to be optimized is substantial for this type of a problem. The smoothness of an optimal cycle efficiency variation is observed in every case.

Suggested Citation

  • Son, Seongmin & Lee, Jeong Ik, 2018. "Application of adjoint sensitivity analysis method to supercritical CO2 power cycle optimization," Energy, Elsevier, vol. 147(C), pages 1153-1164.
  • Handle: RePEc:eee:energy:v:147:y:2018:i:c:p:1153-1164
    DOI: 10.1016/j.energy.2018.01.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218301415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.01.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baronci, Andrea & Messina, Giuseppe & McPhail, Stephen J. & Moreno, Angelo, 2015. "Numerical investigation of a MCFC (Molten Carbonate Fuel Cell) system hybridized with a supercritical CO2 Brayton cycle and compared with a bottoming Organic Rankine Cycle," Energy, Elsevier, vol. 93(P1), pages 1063-1073.
    2. Kim, Young Min & Sohn, Jeong Lak & Yoon, Eui Soo, 2017. "Supercritical CO2 Rankine cycles for waste heat recovery from gas turbine," Energy, Elsevier, vol. 118(C), pages 893-905.
    3. Hu, Lian & Chen, Deqi & Huang, Yanping & Li, Le & Cao, Yiding & Yuan, Dewen & Wang, Junfeng & Pan, Liangming, 2015. "Investigation on the performance of the supercritical Brayton cycle with CO2-based binary mixture as working fluid for an energy transportation system of a nuclear reactor," Energy, Elsevier, vol. 89(C), pages 874-886.
    4. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
    5. Kim, Min Seok & Ahn, Yoonhan & Kim, Beomjoo & Lee, Jeong Ik, 2016. "Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle," Energy, Elsevier, vol. 111(C), pages 893-909.
    6. Hnydiuk-Stefan, Anna & Składzień, Jan, 2017. "Analysis of supercritical coal fired oxy combustion power plant with cryogenic oxygen unit and turbo-compressor," Energy, Elsevier, vol. 128(C), pages 271-283.
    7. Pellegrini, Luiz Felipe & de Oliveira Júnior, Silvio & Burbano, Juan Carlos, 2010. "Supercritical steam cycles and biomass integrated gasification combined cycles for sugarcane mills," Energy, Elsevier, vol. 35(2), pages 1172-1180.
    8. Linares, José Ignacio & Cantizano, Alexis & Arenas, Eva & Moratilla, Beatriz Yolanda & Martín-Palacios, Víctor & Batet, Lluis, 2017. "Recuperated versus single-recuperator re-compressed supercritical CO2 Brayton power cycles for DEMO fusion reactor based on dual coolant lithium lead blanket," Energy, Elsevier, vol. 140(P1), pages 307-317.
    9. Mecheri, Mounir & Le Moullec, Yann, 2016. "Supercritical CO2 Brayton cycles for coal-fired power plants," Energy, Elsevier, vol. 103(C), pages 758-771.
    10. Ma, Yuegeng & Liu, Ming & Yan, Junjie & Liu, Jiping, 2017. "Thermodynamic study of main compression intercooling effects on supercritical CO2 recompression Brayton cycle," Energy, Elsevier, vol. 140(P1), pages 746-756.
    11. Wang, Jiangfeng & Sun, Zhixin & Dai, Yiping & Ma, Shaolin, 2010. "Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network," Applied Energy, Elsevier, vol. 87(4), pages 1317-1324, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Kunlin & Qin, Jiang & Sun, Hongchuang & Li, Heng & He, Shuai & Zhang, Silong & Bao, Wen, 2019. "Power optimization and comparison between simple recuperated and recompressing supercritical carbon dioxide Closed-Brayton-Cycle with finite cold source on hypersonic vehicles," Energy, Elsevier, vol. 181(C), pages 1189-1201.
    2. Cheng, Kunlin & Li, Jiahui & Yu, Jianchi & Fu, Chuanjie & Qin, Jiang & Jing, Wuxing, 2023. "Novel thermoelectric generator enhanced supercritical carbon dioxide closed-Brayton-cycle power generation systems: Performance comparison and configuration optimization," Energy, Elsevier, vol. 284(C).
    3. Ehsan, M. Monjurul & Guan, Zhiqiang & Gurgenci, Hal & Klimenko, Alexander, 2020. "Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: Review and a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Guelpa, Elisa & Verda, Vittorio, 2020. "Exergoeconomic analysis for the design improvement of supercritical CO2 cycle in concentrated solar plant," Energy, Elsevier, vol. 206(C).
    5. Dang, Chaolei & Cheng, Kunlin & Fan, Junhao & Wang, Yilin & Qin, Jiang & Liu, Guodong, 2023. "Performance analysis of fuel vapor turbine and closed-Brayton-cycle combined power generation system for hypersonic vehicles," Energy, Elsevier, vol. 266(C).
    6. Ehsan, M. Monjurul & Duniam, Sam & Li, Jishun & Guan, Zhiqiang & Gurgenci, Hal & Klimenko, Alexander, 2019. "Effect of cooling system design on the performance of the recompression CO2 cycle for concentrated solar power application," Energy, Elsevier, vol. 180(C), pages 480-494.
    7. Du, Yadong & Yang, Ce & Zhao, Ben & Hu, Chenxing & Zhang, Hanzhi & Yu, Zhiyi & Gao, Jianbing & Zhao, Wei & Wang, Haimei, 2023. "Optimal design of a supercritical carbon dioxide recompression cycle using deep neural network and data mining techniques," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olumayegun, Olumide & Wang, Meihong & Oko, Eni, 2019. "Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture," Energy, Elsevier, vol. 166(C), pages 1074-1088.
    2. Song, Jian & Li, Xue-song & Ren, Xiao-dong & Gu, Chun-wei, 2018. "Performance analysis and parametric optimization of supercritical carbon dioxide (S-CO2) cycle with bottoming Organic Rankine Cycle (ORC)," Energy, Elsevier, vol. 143(C), pages 406-416.
    3. Park, Joo Hyun & Park, Hyun Sun & Kwon, Jin Gyu & Kim, Tae Ho & Kim, Moo Hwan, 2018. "Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors," Energy, Elsevier, vol. 160(C), pages 520-535.
    4. Kim, Sunjin & Kim, Min Soo & Kim, Minsung, 2020. "Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid," Energy, Elsevier, vol. 198(C).
    5. Wang, Shengpeng & Zhang, Yifan & Li, Hongzhi & Yao, Mingyu & Peng, Botao & Yan, Junjie, 2020. "Thermohydrodynamic analysis of the vertical gas wall and reheat gas wall in a 300 MW supercritical CO2 boiler," Energy, Elsevier, vol. 211(C).
    6. Gao, Lei & Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2022. "Robustness analysis in supercritical CO2 power generation system configuration optimization," Energy, Elsevier, vol. 242(C).
    7. Marchionni, Matteo & Bianchi, Giuseppe & Tassou, Savvas A., 2018. "Techno-economic assessment of Joule-Brayton cycle architectures for heat to power conversion from high-grade heat sources using CO2 in the supercritical state," Energy, Elsevier, vol. 148(C), pages 1140-1152.
    8. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
    9. Xu, Zhen & Liu, Xinxin & Xie, Yingchun, 2023. "Off-design performances of a dry-cooled supercritical recompression Brayton cycle using CO2–H2S as working fluid," Energy, Elsevier, vol. 276(C).
    10. Jeong, Yongju & Son, Seongmin & Cho, Seong Kuk & Baik, Seungjoon & Lee, Jeong Ik, 2020. "Evaluation of supercritical CO2 compressor off-design performance prediction methods," Energy, Elsevier, vol. 213(C).
    11. Ehsan, M. Monjurul & Guan, Zhiqiang & Gurgenci, Hal & Klimenko, Alexander, 2020. "Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: Review and a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Gotelip, Thiago & Gampe, Uwe & Glos, Stefan, 2022. "Optimization strategies of different SCO2 architectures for gas turbine bottoming cycle applications," Energy, Elsevier, vol. 250(C).
    13. Xinyu Miao & Haochun Zhang & Qi Wang & Wenbo Sun & Yan Xia, 2022. "Thermodynamic, Exergoeconomic and Multi-Objective Analyses of Supercritical N 2 O-He Recompression Brayton Cycle for a Nuclear Spacecraft Application," Energies, MDPI, vol. 15(21), pages 1-31, November.
    14. Luo, Qiao & Zhou, Yuan & Huang, Yanping & Huang, Jiajian & Hu, Wei & Yuan, Yuan & Tang, Longchang, 2023. "Multi-region oscillation characteristics and hazard of supercritical carbon dioxide in parallel channels natural circulation system," Energy, Elsevier, vol. 267(C).
    15. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Niu, Xiaojuan & Ma, Ning & Bu, Zhengkun & Hong, Wenpeng & Li, Haoran, 2022. "Thermodynamic analysis of supercritical Brayton cycles using CO2-based binary mixtures for solar power tower system application," Energy, Elsevier, vol. 254(PA).
    17. Bonalumi, Davide & Giuffrida, Antonio & Sicali, Federico, 2022. "Techno-economic investigations of supercritical CO2-based partial heating cycle as bottoming system of a small gas turbine," Energy, Elsevier, vol. 252(C).
    18. Muhammad, Hafiz Ali & Cho, Junhyun & Cho, Jongjae & Choi, Bongsu & Roh, Chulwoo & Ishfaq, Hafiz Ahmad & Lee, Gilbong & Shin, Hyungki & Baik, Young-Jin & Lee, Beomjoon, 2022. "Performance improvement of supercritical carbon dioxide power cycle at elevated heat sink temperatures," Energy, Elsevier, vol. 239(PD).
    19. Liu, Yaping & Wang, Ying & Huang, Diangui, 2019. "Supercritical CO2 Brayton cycle: A state-of-the-art review," Energy, Elsevier, vol. 189(C).
    20. Aofang Yu & Wen Su & Li Zhao & Xinxing Lin & Naijun Zhou, 2020. "New Knowledge on the Performance of Supercritical Brayton Cycle with CO 2 -Based Mixtures," Energies, MDPI, vol. 13(7), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:147:y:2018:i:c:p:1153-1164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.