IDEAS home Printed from
   My bibliography  Save this article

Combined gas and electricity network expansion planning


  • Chaudry, Modassar
  • Jenkins, Nick
  • Qadrdan, Meysam
  • Wu, Jianzhong


A combined gas and electricity network expansion planning model was developed. Gas-fired generation plants were considered as linkages between the two networks. The model simultaneously minimises gas and electricity operational and network expansion costs. Additionally it optimally places planned power generation plants around the electricity network. Network expansion was implemented by adding new assets such as pipes, compressors, and storage facilities in the gas network and increasing transmission line capacity in the electricity network. The developed model was used to analyse the GB gas and electricity infrastructure expansion requirements to achieve a low carbon energy system. Two scenarios were implemented, a reference and a low carbon scenario. For both scenarios, CGEN defined a network at lowest cost capable of meeting varying demand and power generation capacity profiles. Greater peak gas demand of approximately 25mcm/d by 2030 in the reference scenario resulted in CGEN adding an additional 1Bcm of gas storage capacity compared with the low carbon scenario. LNG gas supplies were shown to account for over 70% of total gas supplies by the end of the time horizon for both scenarios. The combined gas and electricity network planning approach allows analysis into the interactions between these two networks. This interaction allows variables such as total gas supply (gas used for electricity production is an endogenous variable), which 13% higher in the reference scenario and geographic location of gas fired generation to explicitly take account of the impact on both gas and electricity infrastructures.

Suggested Citation

  • Chaudry, Modassar & Jenkins, Nick & Qadrdan, Meysam & Wu, Jianzhong, 2014. "Combined gas and electricity network expansion planning," Applied Energy, Elsevier, vol. 113(C), pages 1171-1187.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1171-1187
    DOI: 10.1016/j.apenergy.2013.08.071

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Andre, Jean & Bonnans, Frédéric & Cornibert, Laurent, 2009. "Optimization of capacity expansion planning for gas transportation networks," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1019-1027, September.
    2. Qadrdan, Meysam & Chaudry, Modassar & Wu, Jianzhong & Jenkins, Nick & Ekanayake, Janaka, 2010. "Impact of a large penetration of wind generation on the GB gas network," Energy Policy, Elsevier, vol. 38(10), pages 5684-5695, October.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1171-1187. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.