IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p734-d137772.html
   My bibliography  Save this article

Multi-Objective Optimal Energy Management for the Integrated Electrical and Natural Gas Network with Combined Cooling, Heat and Power Plants

Author

Listed:
  • Yanbo Chen

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Yangzi Wang

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Jin Ma

    (School of Electrical and Information Engineering, University of Sydney, Sydney 2006, Australia)

Abstract

This paper proposes a multi-objective optimal energy management framework for the integrated electrical and natural gas network (IEGN) with combined cooling, heat, and power (CCHP) plants. Various energy conversion devices that are installed in the CCHP plant provide redundant generation options and energy pathways, which could be optimally chosen and shifted with given objectives, while meeting the multi-energy (ME) demands. However, this flexible energy dispatch manners may frequently change the energy distribution in the IEGN and challenge their mutual accommodation. In particular, the linepack reserve in the natural gas network, which supports the ramping capabilities of both the gas turbines and the flexible energy dispatch of the gas-dependent ME devices, is highly influenced. Without enough linepack reserve, not only will the flexible operation of the CCHP plants be hindered, but also the gas turbines will be prevented from balancing the supply and the demand in the electrical network, thus threatens the safety of the IEGN. Owing to this, the linepack reserve is modelled and jointly considered in the proposed energy management framework. The multi-objective optimization model that is proposed in this paper could simultaneously promote the economic benefits, safety, and efficiency of the IEGN, and Elitist Non-dominated Sorting Genetic algorithm II is used to solve it. At last, case studies demonstrate the effectiveness of the proposed method.

Suggested Citation

  • Yanbo Chen & Yangzi Wang & Jin Ma, 2018. "Multi-Objective Optimal Energy Management for the Integrated Electrical and Natural Gas Network with Combined Cooling, Heat and Power Plants," Energies, MDPI, vol. 11(4), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:734-:d:137772
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/734/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/734/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chicco, Gianfranco & Mancarella, Pierluigi, 2007. "Trigeneration primary energy saving evaluation for energy planning and policy development," Energy Policy, Elsevier, vol. 35(12), pages 6132-6144, December.
    2. Qadrdan, Meysam & Chaudry, Modassar & Wu, Jianzhong & Jenkins, Nick & Ekanayake, Janaka, 2010. "Impact of a large penetration of wind generation on the GB gas network," Energy Policy, Elsevier, vol. 38(10), pages 5684-5695, October.
    3. Keyaerts, Nico & Hallack, Michelle & Glachant, Jean-Michel & D'haeseleer, William, 2011. "Gas market distorting effects of imbalanced gas balancing rules: Inefficient regulation of pipeline flexibility," Energy Policy, Elsevier, vol. 39(2), pages 865-876, February.
    4. Keyaerts, Nico & Delarue, Erik & Rombauts, Yannick & D’haeseleer, William, 2014. "Impact of unpredictable renewables on gas-balancing design in Europe," Applied Energy, Elsevier, vol. 119(C), pages 266-277.
    5. Olatomiwa, Lanre & Mekhilef, Saad & Ismail, M.S. & Moghavvemi, M., 2016. "Energy management strategies in hybrid renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 821-835.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Pepiciello & Alfredo Vaccaro & Mario Mañana, 2019. "Robust Optimization of Energy Hubs Operation Based on Extended Affine Arithmetic," Energies, MDPI, vol. 12(12), pages 1-15, June.
    2. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.
    3. Yu Huang & Kai Yang & Weiting Zhang & Kwang Y. Lee, 2018. "Hierarchical Energy Management for the MultiEnergy Carriers System with Different Interest Bodies," Energies, MDPI, vol. 11(10), pages 1-18, October.
    4. Hosseini, Seyed Hamid Reza & Allahham, Adib & Walker, Sara Louise & Taylor, Phil, 2020. "Optimal planning and operation of multi-vector energy networks: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Jinming Jiang & Xindong Wei & Weijun Gao & Soichiro Kuroki & Zhonghui Liu, 2018. "Reliability and Maintenance Prioritization Analysis of Combined Cooling, Heating and Power Systems," Energies, MDPI, vol. 11(6), pages 1-24, June.
    6. Yongli Wang & Haiyang Yu & Mingyue Yong & Yujing Huang & Fuli Zhang & Xiaohai Wang, 2018. "Optimal Scheduling of Integrated Energy Systems with Combined Heat and Power Generation, Photovoltaic and Energy Storage Considering Battery Lifetime Loss," Energies, MDPI, vol. 11(7), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keyaerts, Nico & Delarue, Erik & Rombauts, Yannick & D’haeseleer, William, 2014. "Impact of unpredictable renewables on gas-balancing design in Europe," Applied Energy, Elsevier, vol. 119(C), pages 266-277.
    2. Arthur Thomas & Olivier Massol & Benoît Sévi, 2019. "How are day-ahead prices informative for predicting the next day’s consumption of natural gas?," Post-Print hal-04319396, HAL.
    3. Devlin, Joseph & Li, Kang & Higgins, Paraic & Foley, Aoife, 2016. "The importance of gas infrastructure in power systems with high wind power penetrations," Applied Energy, Elsevier, vol. 167(C), pages 294-304.
    4. Devlin, Joseph & Li, Kang & Higgins, Paraic & Foley, Aoife, 2017. "Gas generation and wind power: A review of unlikely allies in the United Kingdom and Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 757-768.
    5. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Sandoval, Cinda & Alvarado, Victor M. & Carmona, Jean-Claude & Lopez Lopez, Guadalupe & Gomez-Aguilar, J.F., 2017. "Energy management control strategy to improve the FC/SC dynamic behavior on hybrid electric vehicles: A frequency based distribution," Renewable Energy, Elsevier, vol. 105(C), pages 407-418.
    7. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    8. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    9. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    10. Arvesen, Ø. & Medbø, V. & Fleten, S.-E. & Tomasgard, A. & Westgaard, S., 2013. "Linepack storage valuation under price uncertainty," Energy, Elsevier, vol. 52(C), pages 155-164.
    11. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Sergey Obukhov & Ahmed Ibrahim & Mohamed A. Tolba & Ali M. El-Rifaie, 2019. "Power Balance Management of an Autonomous Hybrid Energy System Based on the Dual-Energy Storage," Energies, MDPI, vol. 12(24), pages 1-15, December.
    13. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    14. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    16. Miriello, Caterina & Polo, Michele, 2015. "The development of gas hubs in Europe," Energy Policy, Elsevier, vol. 84(C), pages 177-190.
    17. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    18. Moya, M. & Bruno, J.C. & Eguia, P. & Torres, E. & Zamora, I. & Coronas, A., 2011. "Performance analysis of a trigeneration system based on a micro gas turbine and an air-cooled, indirect fired, ammonia–water absorption chiller," Applied Energy, Elsevier, vol. 88(12), pages 4424-4440.
    19. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    20. Vieira, Filomeno M. & Moura, Pedro S. & de Almeida, Aníbal T., 2017. "Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings," Renewable Energy, Elsevier, vol. 103(C), pages 308-320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:734-:d:137772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.