IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v382y2025ics0306261925000030.html
   My bibliography  Save this article

A novel decision support system for enhancing long-term forecast accuracy in virtual power plants using bidirectional long short-term memory networks

Author

Listed:
  • Nadimi, Reza
  • Goto, Mika

Abstract

Accurate forecasting of power generation is a serious challenge of virtual power plant (VPP) in day ahead (DA) market because of the volatility and uncertainty of renewables. The recursive prediction technique used in bidirectional long short-term memory (BiLSTM) network often struggles with long-term accuracy. This study proposes a novel decision support system (DSS) to generate unknown future inputs, called “DSS test data”, in the recursive prediction technique and tackle the long-term forecasts limitation. The proposed DSS integrates the K-means clustering algorithm and the least squared optimization method. The K-means clustering algorithm classifies historical data into five distinct day types—rainy, overcast, partly cloudy, cloudy, and sunny—based on maximum daily power generation. The DSS employs least squared optimization method to refine the DSS test data for the BiLSTM model, utilizing the most recent seven days of data. Additionally, this study incorporates a variable lookback period within the BiLSTM model to enhance the accuracy of the forecasting model. The DSS-BiLSTM model forecasts VPP power generation 38 h ahead in the Japanese DA power market. Compared to BiLSTM, LSTM, transformer network, attention-based network, gated recurrent unit, and five statistical time series models, the proposed model demonstrates superior accuracy and reduced dispersion in long-term forecasts. The daily mean absolute error for the DSS-BiLSTM, BiLSTM, LSTM, transformer network, attention-based network, and gated recurrent unit models, for a 38-h forecast horizon, are 0.26 GW, 0.48 GW, 0.45 GW, 0.69 GW, 0.66 GW, and 0.62 GW, respectively. This pattern is consistent across the three other error metrics and various forecasting time horizons, indicating that the DSS-BiLSTM model consistently outperforms the other models evaluated in this study in terms of prediction accuracy. The main advantages of the proposed model include ease of implementation, low dispersion, and high forecasting accuracy across various settlement periods, as evidenced by multiple accuracy metrics.

Suggested Citation

  • Nadimi, Reza & Goto, Mika, 2025. "A novel decision support system for enhancing long-term forecast accuracy in virtual power plants using bidirectional long short-term memory networks," Applied Energy, Elsevier, vol. 382(C).
  • Handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261925000030
    DOI: 10.1016/j.apenergy.2025.125273
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925000030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125273?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, Adil & Khalid, Muhammad, 2018. "An intelligent framework for short-term multi-step wind speed forecasting based on Functional Networks," Applied Energy, Elsevier, vol. 225(C), pages 902-911.
    2. Xue, Puning & Jiang, Yi & Zhou, Zhigang & Chen, Xin & Fang, Xiumu & Liu, Jing, 2019. "Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms," Energy, Elsevier, vol. 188(C).
    3. Washizu, Ayu & Ju, Yiyi & Yoshida, Akira & Tayama, Masashi & Amano, Yoshiharu, 2024. "Modeling the distributed energy resource aggregator services in a macroeconomic framework: The application to Japan," Energy, Elsevier, vol. 312(C).
    4. Chen, Xue-Jun & Zhao, Jing & Jia, Xiao-Zhong & Li, Zhong-Long, 2021. "Multi-step wind speed forecast based on sample clustering and an optimized hybrid system," Renewable Energy, Elsevier, vol. 165(P1), pages 595-611.
    5. Souhaib Ben Taieb & Rob J Hyndman, 2012. "Recursive and direct multi-step forecasting: the best of both worlds," Monash Econometrics and Business Statistics Working Papers 19/12, Monash University, Department of Econometrics and Business Statistics.
    6. Mizuno, Emi, 2014. "Overview of wind energy policy and development in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 999-1018.
    7. Kim, Jimin & Obregon, Josue & Park, Hoonseok & Jung, Jae-Yoon, 2024. "Multi-step photovoltaic power forecasting using transformer and recurrent neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    8. Reza Nadimi & Masahito Takahashi & Koji Tokimatsu & Mika Goto, 2024. "The Reliability and Profitability of Virtual Power Plant with Short-Term Power Market Trading and Non-Spinning Reserve Diesel Generator," Energies, MDPI, vol. 17(9), pages 1-19, April.
    9. In, YeonJun & Jung, Jae-Yoon, 2022. "Simple averaging of direct and recursive forecasts via partial pooling using machine learning," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1386-1399.
    10. Gulay, Emrah & Sen, Mustafa & Akgun, Omer Burak, 2024. "Forecasting electricity production from various energy sources in Türkiye: A predictive analysis of time series, deep learning, and hybrid models," Energy, Elsevier, vol. 286(C).
    11. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    12. Yu, Shiwei & Zhou, Shuangshuang & Zheng, Shuhong & Li, Zhenxi & Liu, Lancui, 2019. "Developing an optimal renewable electricity generation mix for China using a fuzzy multi-objective approach," Renewable Energy, Elsevier, vol. 139(C), pages 1086-1098.
    13. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    14. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    15. Sharadga, Hussein & Hajimirza, Shima & Balog, Robert S., 2020. "Time series forecasting of solar power generation for large-scale photovoltaic plants," Renewable Energy, Elsevier, vol. 150(C), pages 797-807.
    16. Li, Fengyun & Zheng, Haofeng & Li, Xingmei, 2022. "A novel hybrid model for multi-step ahead photovoltaic power prediction based on conditional time series generative adversarial networks," Renewable Energy, Elsevier, vol. 199(C), pages 560-586.
    17. Wang, Chuang & Zhao, Haishen & Liu, Yang & Fan, Guojin, 2024. "Minute-level ultra-short-term power load forecasting based on time series data features," Applied Energy, Elsevier, vol. 372(C).
    18. Nguyen, Hoang-Phuong & Baraldi, Piero & Zio, Enrico, 2021. "Ensemble empirical mode decomposition and long short-term memory neural network for multi-step predictions of time series signals in nuclear power plants," Applied Energy, Elsevier, vol. 283(C).
    19. Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Liu, Jun & Shi, Junsheng & Liu, Wuming, 2022. "Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM," Energy, Elsevier, vol. 246(C).
    20. Scott M Robeson & Cort J Willmott, 2023. "Decomposition of the mean absolute error (MAE) into systematic and unsystematic components," PLOS ONE, Public Library of Science, vol. 18(2), pages 1-8, February.
    21. Nadimi, Reza & Tokimatsu, Koji, 2018. "Modeling of quality of life in terms of energy and electricity consumption," Applied Energy, Elsevier, vol. 212(C), pages 1282-1294.
    22. Rafati, Amir & Joorabian, Mahmood & Mashhour, Elaheh, 2020. "An efficient hour-ahead electrical load forecasting method based on innovative features," Energy, Elsevier, vol. 201(C).
    23. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Multi-step solar irradiation prediction based on weather forecast and generative deep learning model," Renewable Energy, Elsevier, vol. 188(C), pages 637-650.
    24. Kitamura, Toshihiko & Managi, Shunsuke, 2017. "Energy security and potential supply disruption: A case study in Japan," Energy Policy, Elsevier, vol. 110(C), pages 90-104.
    25. Tian, Zhongda & Chen, Hao, 2021. "Multi-step short-term wind speed prediction based on integrated multi-model fusion," Applied Energy, Elsevier, vol. 298(C).
    26. Francois Rozon & Craig McGregor & Michael Owen, 2023. "Long-Term Forecasting Framework for Renewable Energy Technologies’ Installed Capacity and Costs for 2050," Energies, MDPI, vol. 16(19), pages 1-20, September.
    27. Kong, Xiangfei & Du, Xinyu & Xue, Guixiang & Xu, Zhijie, 2023. "Multi-step short-term solar radiation prediction based on empirical mode decomposition and gated recurrent unit optimized via an attention mechanism," Energy, Elsevier, vol. 282(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yujie Jin & Ciwei Gao, 2025. "Market Applications and Uncertainty Handling for Virtual Power Plants," Energies, MDPI, vol. 18(14), pages 1-27, July.
    2. Xinxing Liu & Ciwei Gao, 2025. "Review and Prospects of Artificial Intelligence Technology in Virtual Power Plants," Energies, MDPI, vol. 18(13), pages 1-26, June.
    3. Hu, Jinxue & Duan, Pengfei & Cao, Xiaodong & Xue, Qingwen & Zhao, Bingxu & Zhao, Xiaoyu & Yuan, Xiaoyang & Zhang, Chenyang, 2025. "A multi-energy load forecasting method based on the Mixture-of-Experts model and dynamic multilevel attention mechanism," Energy, Elsevier, vol. 324(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadimi, Reza & Goto, Mika, 2025. "Uncertainty reduction in power forecasting of virtual power plant: From day-ahead to balancing markets," Renewable Energy, Elsevier, vol. 238(C).
    2. Nikolay Robinzonov & Gerhard Tutz & Torsten Hothorn, 2012. "Boosting techniques for nonlinear time series models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 99-122, January.
    3. Sarah Hadri & Mehdi Najib & Mohamed Bakhouya & Youssef Fakhri & Mohamed El Arroussi, 2021. "Performance Evaluation of Forecasting Strategies for Electricity Consumption in Buildings," Energies, MDPI, vol. 14(18), pages 1-17, September.
    4. Mousavi, Rashin & Mousavi, Arash & Mousavi, Yashar & Tavasoli, Mahsa & Arab, Aliasghar & Kucukdemiral, Ibrahim Beklan & Alfi, Alireza & Fekih, Afef, 2025. "Revolutionizing solar energy resources: The central role of generative AI in elevating system sustainability and efficiency," Applied Energy, Elsevier, vol. 382(C).
    5. Hauzenberger, Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2025. "Bayesian neural networks for macroeconomic analysis," Journal of Econometrics, Elsevier, vol. 249(PC).
    6. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    7. Eliana Gonz�lez & Luis F. Melo & Viviana Monroy & Brayan Rojas, 2009. "A Dynamic Factor Model For The Colombian Inflation," Borradores de Economia 5273, Banco de la Republica.
    8. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    9. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    10. Kelly Trinh & Bo Zhang & Chenghan Hou, 2025. "Macroeconomic real‐time forecasts of univariate models with flexible error structures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 59-78, January.
    11. Dima, Bogdan & Dima, Ştefana Maria & Ioan, Roxana, 2025. "The short-run impact of investor expectations’ past volatility on current predictions: The case of VIX," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 98(C).
    12. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    13. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    14. Nonejad, Nima, 2022. "An interesting finding about the ability of geopolitical risk to forecast aggregate equity return volatility out-of-sample," Finance Research Letters, Elsevier, vol. 47(PB).
    15. Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
    16. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    17. Catania, Leopoldo & Grassi, Stefano & Ravazzolo, Francesco, 2019. "Forecasting cryptocurrencies under model and parameter instability," International Journal of Forecasting, Elsevier, vol. 35(2), pages 485-501.
    18. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    19. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    20. Nikitopoulos, Christina Sklibosios & Thomas, Alice Carole & Wang, Jianxin, 2023. "The economic impact of daily volatility persistence on energy markets," Journal of Commodity Markets, Elsevier, vol. 30(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261925000030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.