IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3743-d1701944.html
   My bibliography  Save this article

Market Applications and Uncertainty Handling for Virtual Power Plants

Author

Listed:
  • Yujie Jin

    (College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China)

  • Ciwei Gao

    (College of Electrical Engineering, Southeast University, Nanjing 210096, China)

Abstract

Virtual power plants achieve the flexible scheduling and management of power systems by integrating distributed energy resources such as renewable energy sources, energy storage systems, and controllable loads. However, due to the instability of renewable energy generation, load demand fluctuations, and market price uncertainty, virtual power plants face a gigantic challenge operating and participating in electricity markets. First, this paper outlines the functions and uncertainties of virtual power plants; then, it describes the uncertainties of virtual power plants in terms of aggregation, participation in market bidding, and optimal dispatch; finally, it summarizes the review.

Suggested Citation

  • Yujie Jin & Ciwei Gao, 2025. "Market Applications and Uncertainty Handling for Virtual Power Plants," Energies, MDPI, vol. 18(14), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3743-:d:1701944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3743/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3743/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zamani, Ali Ghahgharaee & Zakariazadeh, Alireza & Jadid, Shahram, 2016. "Day-ahead resource scheduling of a renewable energy based virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 324-340.
    2. Wang, Yuqing & Fu, Wenjie & Wang, Junlong & Zhen, Zhao & Wang, Fei, 2024. "Ultra-short-term distributed PV power forecasting for virtual power plant considering data-scarce scenarios," Applied Energy, Elsevier, vol. 373(C).
    3. Yetuo Tan & Yongming Zhi & Zhengbin Luo & Honggang Fan & Jun Wan & Tao Zhang, 2023. "Optimal Scheduling of Virtual Power Plant with Flexibility Margin Considering Demand Response and Uncertainties," Energies, MDPI, vol. 16(15), pages 1-14, August.
    4. Yan, Laiqing & Zhang, Xiaoyu & Ullah, Zia & Qazi, Hasan Saeed & Hasanien, Hany M., 2025. "A novel solution strategy for scheduling optimization of virtual power plant considering multiple participants and Peak Energy Market," Renewable Energy, Elsevier, vol. 250(C).
    5. Zhang, Jinliang & Liu, Ziyi & Liu, Yishuo, 2025. "A scheduling optimization model for a gas-electricity interconnected virtual power plant considering green certificates-carbon joint trading and source-load uncertainties," Energy, Elsevier, vol. 315(C).
    6. Loßner, Martin & Böttger, Diana & Bruckner, Thomas, 2017. "Economic assessment of virtual power plants in the German energy market — A scenario-based and model-supported analysis," Energy Economics, Elsevier, vol. 62(C), pages 125-138.
    7. Cao, Jinye & Xu, Chunlei & Siqin, Zhuoya & Yu, Miao & Diao, Ruisheng, 2025. "Scenario-driven distributionally robust optimization model for a rural virtual power plant considering flexible energy-carbon-green certificate trading," Applied Energy, Elsevier, vol. 379(C).
    8. Meng, He & Jia, Hongjie & Xu, Tao & Hatziargyriou, Nikos & Wei, Wei & Wang, Rujing, 2025. "Internal pricing driven dynamic aggregation of virtual power plant with energy storage systems," Energy, Elsevier, vol. 321(C).
    9. Guoqiang Sun & Weihang Qian & Wenjin Huang & Zheng Xu & Zhongxing Fu & Zhinong Wei & Sheng Chen, 2019. "Stochastic Adaptive Robust Dispatch for Virtual Power Plants Using the Binding Scenario Identification Approach," Energies, MDPI, vol. 12(10), pages 1-23, May.
    10. Feng, Jie & Ran, Lun & Wang, Zhiyuan & Zhang, Mengling, 2024. "Optimal energy scheduling of virtual power plant integrating electric vehicles and energy storage systems under uncertainty," Energy, Elsevier, vol. 309(C).
    11. Mei, Shufan & Tan, Qinliang & Trivedi, Anupam & Srinivasan, Dipti, 2024. "A two-step optimization model for virtual power plant participating in spot market based on energy storage power distribution considering comprehensive forecasting error of renewable energy output," Applied Energy, Elsevier, vol. 376(PB).
    12. Nadimi, Reza & Goto, Mika, 2025. "A novel decision support system for enhancing long-term forecast accuracy in virtual power plants using bidirectional long short-term memory networks," Applied Energy, Elsevier, vol. 382(C).
    13. Kong, Xiangyu & Xiao, Jie & Liu, Dehong & Wu, Jianzhong & Wang, Chengshan & Shen, Yu, 2020. "Robust stochastic optimal dispatching method of multi-energy virtual power plant considering multiple uncertainties," Applied Energy, Elsevier, vol. 279(C).
    14. Zhai, Xiangyu & Li, Zening & Li, Zhengmao & Xue, Yixun & Chang, Xinyue & Su, Jia & Jin, Xiaolong & Wang, Peng & Sun, Hongbin, 2025. "Risk-averse energy management for integrated electricity and heat systems considering building heating vertical imbalance: An asynchronous decentralized approach," Applied Energy, Elsevier, vol. 383(C).
    15. Nadimi, Reza & Goto, Mika, 2025. "Uncertainty reduction in power forecasting of virtual power plant: From day-ahead to balancing markets," Renewable Energy, Elsevier, vol. 238(C).
    16. Liu, Xin & Li, Yang & Wang, Li & Tang, Junbo & Qiu, Haifeng & Berizzi, Alberto & Valentin, Ilea & Gao, Ciwei, 2024. "Dynamic aggregation strategy for a virtual power plant to improve flexible regulation ability," Energy, Elsevier, vol. 297(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaiss, Mateus & Wan, Yihao & Gebbran, Daniel & Vila, Clodomiro Unsihuay & Dragičević, Tomislav, 2025. "Review on Virtual Power Plants/Virtual Aggregators: Concepts, applications, prospects and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    2. Jiang, Yuzheng & Dong, Jun & Huang, Hexiang, 2024. "Optimal bidding strategy for the price-maker virtual power plant in the day-ahead market based on multi-agent twin delayed deep deterministic policy gradient algorithm," Energy, Elsevier, vol. 306(C).
    3. Wang, Han & Riaz, Shariq & Mancarella, Pierluigi, 2020. "Integrated techno-economic modeling, flexibility analysis, and business case assessment of an urban virtual power plant with multi-market co-optimization," Applied Energy, Elsevier, vol. 259(C).
    4. Yu, Songyuan & Fang, Fang & Liu, Yajuan & Liu, Jizhen, 2019. "Uncertainties of virtual power plant: Problems and countermeasures," Applied Energy, Elsevier, vol. 239(C), pages 454-470.
    5. Naval, Natalia & Sánchez, Raul & Yusta, Jose M., 2020. "A virtual power plant optimal dispatch model with large and small-scale distributed renewable generation," Renewable Energy, Elsevier, vol. 151(C), pages 57-69.
    6. Natalia Naval & Jose M. Yusta, 2020. "Water-Energy Management for Demand Charges and Energy Cost Optimization of a Pumping Stations System under a Renewable Virtual Power Plant Model," Energies, MDPI, vol. 13(11), pages 1-21, June.
    7. Amit Kumer Podder & Sayemul Islam & Nallapaneni Manoj Kumar & Aneesh A. Chand & Pulivarthi Nageswara Rao & Kushal A. Prasad & T. Logeswaran & Kabir A. Mamun, 2020. "Systematic Categorization of Optimization Strategies for Virtual Power Plants," Energies, MDPI, vol. 13(23), pages 1-46, November.
    8. Hongkai Zhang & Outing Zhang & Peng Li & Xianyu Yue & Zhongfu Tan, 2025. "Two-Stage Robust Optimization Model for Flexible Response of Micro-Energy Grid Clusters to Host Utility Grid," Energies, MDPI, vol. 18(12), pages 1-22, June.
    9. Dodiek Ika Candra & Kilian Hartmann & Michael Nelles, 2018. "Economic Optimal Implementation of Virtual Power Plants in the German Power Market," Energies, MDPI, vol. 11(9), pages 1-24, September.
    10. Ziyu Li & Bangjun Wang, 2024. "A Bibliometric Analysis of Carbon Allowances in the Carbon Emissions Trading Market," Energies, MDPI, vol. 18(1), pages 1-18, December.
    11. Sampath Kumar Venkatachary & Jagdish Prasad & Ravi Samikannu & Annamalai Alagappan & Leo John Baptist & Raymon Antony Raj, 2020. "Macro Economics of Virtual Power Plant for Rural Areas of Botswana," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 196-207.
    12. Reza Nadimi & Masahito Takahashi & Koji Tokimatsu & Mika Goto, 2024. "The Reliability and Profitability of Virtual Power Plant with Short-Term Power Market Trading and Non-Spinning Reserve Diesel Generator," Energies, MDPI, vol. 17(9), pages 1-19, April.
    13. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    14. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    15. Liu, Zhiqiang & Cui, Yanping & Wang, Jiaqiang & Yue, Chang & Agbodjan, Yawovi Souley & Yang, Yu, 2022. "Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties," Energy, Elsevier, vol. 254(PC).
    16. Gabriella Ferruzzi & Giorgio Graditi & Federico Rossi, 2020. "A joint approach for strategic bidding of a microgrid in energy and spinning reserve markets," Energy & Environment, , vol. 31(1), pages 88-115, February.
    17. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    18. Ju, Liwei & Yin, Zhe & Lu, Xiaolong & Yang, Shenbo & Li, Peng & Rao, Rao & Tan, Zhongfu, 2022. "A Tri-dimensional Equilibrium-based stochastic optimal dispatching model for a novel virtual power plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator," Applied Energy, Elsevier, vol. 324(C).
    19. Ren, Junzhi & Zeng, Yuan & Qin, Chao & Li, Bao & Wang, Ziqiang & Yuan, Quan & Zhai, Hefeng & Li, Peng, 2024. "Characterization and application of flexible operation region of virtual power plant," Applied Energy, Elsevier, vol. 371(C).
    20. Behnaz Behi & Ali Baniasadi & Ali Arefi & Arian Gorjy & Philip Jennings & Almantas Pivrikas, 2020. "Cost–Benefit Analysis of a Virtual Power Plant Including Solar PV, Flow Battery, Heat Pump, and Demand Management: A Western Australian Case Study," Energies, MDPI, vol. 13(10), pages 1-24, May.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3743-:d:1701944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.