IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v379y2025ics0306261924022876.html
   My bibliography  Save this article

Scenario-driven distributionally robust optimization model for a rural virtual power plant considering flexible energy-carbon-green certificate trading

Author

Listed:
  • Cao, Jinye
  • Xu, Chunlei
  • Siqin, Zhuoya
  • Yu, Miao
  • Diao, Ruisheng

Abstract

With the increased coupling of agriculture and energy, there is a trend to aggregate and manage distributed energy resources in agricultural parks using rural virtual power plants (RVPP). This paper investigates the impact of uncertainties in renewable energy generation and energy usage, as well as the flexibility of energy‑carbon-green certificate (GC) trading, on the planning and operation of RVPP. Firstly, the basic architecture of RVPP is constructed, and a joint trading mechanism for the carbon emission allowance (CEA) and GC is designed. On this basis, a two-stage deterministic optimization model is developed considering capacity configuration in the planning stage and the Stackelberg game in the operation stage of RVPP. Then, several typical scenarios considering the correlation of uncertainties are generated, and the deterministic model is transformed into a distributionally robust optimization (DRO) model in a scenario-driven manner. The confidence intervals of the scenario probability distributions are constrained by a combination of 1-norm and infinity-norm. Finally, the DRO model is decomposed into two problems, solved iteratively using a revised Kriging model and a column-and-constraint generation (C&CG) algorithm. Several cases covering different transaction forms and solution methods are analyzed comparatively to validate the effectiveness of the DRO model. The simulation results indicate that, compared to the energy trading with a fixed price, flexible trading based on the Stackelberg game can reduce the total planning and operating costs by 22.49 %. Compared to the separate trading of GC and CEA, the trading volume of CEA decreases by 44.21 % under the joint trading mechanism, with the increased configuration of renewable energy resources.

Suggested Citation

  • Cao, Jinye & Xu, Chunlei & Siqin, Zhuoya & Yu, Miao & Diao, Ruisheng, 2025. "Scenario-driven distributionally robust optimization model for a rural virtual power plant considering flexible energy-carbon-green certificate trading," Applied Energy, Elsevier, vol. 379(C).
  • Handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924022876
    DOI: 10.1016/j.apenergy.2024.124904
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924022876
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhai, Junyi & Wang, Sheng & Guo, Lei & Jiang, Yuning & Kang, Zhongjian & Jones, Colin N., 2022. "Data-driven distributionally robust joint chance-constrained energy management for multi-energy microgrid," Applied Energy, Elsevier, vol. 326(C).
    2. Li, Qiang & Wei, Fanchao & Zhou, Yongcheng & Li, Jiajia & Zhou, Guowen & Wang, Zhonghao & Liu, Jinfu & Yan, Peigang & Yu, Daren, 2023. "A scheduling framework for VPP considering multiple uncertainties and flexible resources," Energy, Elsevier, vol. 282(C).
    3. Yan, Sizhe & Wang, Weiqing & Li, Xiaozhu & Lv, Haipeng & Fan, Tianyuan & Aikepaer, Sumaiya, 2023. "Stochastic optimal scheduling strategy of cross-regional carbon emissions trading and green certificate trading market based on Stackelberg game," Renewable Energy, Elsevier, vol. 219(P1).
    4. Xu, Guangyue & Yang, Mengge & Li, Shuang & Jiang, Mingqi & Rehman, Hafizur, 2024. "Evaluating the effect of renewable energy investment on renewable energy development in China with panel threshold model," Energy Policy, Elsevier, vol. 187(C).
    5. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    6. Gao, Jinling & Maalla, Allam & Li, Xuetao & Zhou, Xiao & Lian, Kong, 2024. "Comprehensive model for efficient microgrid operation: Addressing uncertainties and economic considerations," Energy, Elsevier, vol. 306(C).
    7. Lei, Hongxuan & Liu, Pan & Cheng, Qian & Xu, Huan & Liu, Weibo & Zheng, Yalian & Chen, Xiangding & Zhou, Yong, 2024. "Frequency, duration, severity of energy drought and its propagation in hydro-wind-photovoltaic complementary systems," Renewable Energy, Elsevier, vol. 230(C).
    8. Wang, Zixuan & Li, Peng & Zhou, Yue & Wu, Jianzhong & Zhang, Chunyan & Zeng, Pingliang & Wang, Jiahao & Pan, Youpeng & Yin, Yunxing, 2023. "Coordinated configuration strategy of multi-energy systems based on capacity-energy-information sharing," Energy, Elsevier, vol. 277(C).
    9. Cao, Jinye & Yang, Dechang & Dehghanian, Payman, 2024. "Cooperative operation for multiple virtual power plants considering energy-carbon trading: A Nash bargaining model," Energy, Elsevier, vol. 307(C).
    10. Heimvik, Arild & Amundsen, Eirik S., 2021. "Prices vs. percentages: Use of tradable green certificates as an instrument of greenhouse gas mitigation," Energy Economics, Elsevier, vol. 99(C).
    11. Li, Yang & Han, Meng & Shahidehpour, Mohammad & Li, Jiazheng & Long, Chao, 2023. "Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response," Applied Energy, Elsevier, vol. 335(C).
    12. Tan, Jinjing & Pan, Weiqi & Li, Yang & Hu, Haoming & Zhang, Can, 2023. "Energy-sharing operation strategy of multi-district integrated energy systems considering carbon and renewable energy certificate trading," Applied Energy, Elsevier, vol. 339(C).
    13. Zakaria, A. & Ismail, Firas B. & Lipu, M.S. Hossain & Hannan, M.A., 2020. "Uncertainty models for stochastic optimization in renewable energy applications," Renewable Energy, Elsevier, vol. 145(C), pages 1543-1571.
    14. Qi, Meng & Kim, Minsu & Dat Vo, Nguyen & Yin, Liang & Liu, Yi & Park, Jinwoo & Moon, Il, 2022. "Proposal and surrogate-based cost-optimal design of an innovative green ammonia and electricity co-production system via liquid air energy storage," Applied Energy, Elsevier, vol. 314(C).
    15. Shen, Feifei & Zhao, Liang & Wang, Meihong & Du, Wenli & Qian, Feng, 2022. "Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty," Applied Energy, Elsevier, vol. 307(C).
    16. Yu, Jie & Chen, Lu & Wang, Qiong & Zhang, Xi & Sun, Qinghe, 2024. "Towards sustainable regional energy solutions: An optimized operational model for integrated energy systems with price-responsive planning," Energy, Elsevier, vol. 305(C).
    17. Dong, Yingchao & Zhang, Hongli & Ma, Ping & Wang, Cong & Zhou, Xiaojun, 2023. "A hybrid robust-interval optimization approach for integrated energy systems planning under uncertainties," Energy, Elsevier, vol. 274(C).
    18. Wu, Shu & Han, Hongyun, 2022. "Energy transition, intensity growth, and policy evolution: Evidence from rural China," Energy Economics, Elsevier, vol. 105(C).
    19. Ma, Teng & Li, Ming-Jia & Fan, Chang-Hao & Dong, Hong-Sheng, 2024. "A novel real-time dynamic performance evaluation and capacity configuration optimization method of generation-storage-load for integrated energy system," Applied Energy, Elsevier, vol. 374(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Jiaming & Tan, Qinliang & Lv, Hanyu, 2025. "Data-driven climate resilience assessment for distributed energy systems using diffusion transformer and polynomial expansions," Applied Energy, Elsevier, vol. 380(C).
    2. Liu, Jiejie & Li, Yao & Ma, Yanan & Qin, Ruomu & Meng, Xianyang & Wu, Jiangtao, 2023. "Two-layer multiple scenario optimization framework for integrated energy system based on optimal energy contribution ratio strategy," Energy, Elsevier, vol. 285(C).
    3. Chen, Yuzhu & Guo, Weimin & Lund, Peter D. & Du, Na & Yang, Kun & wang, Jun, 2024. "Configuration optimization of a wind-solar based net-zero emission tri-generation energy system considering renewable power and carbon trading mechanisms," Renewable Energy, Elsevier, vol. 232(C).
    4. Cao, Jinye & Yang, Dechang & Dehghanian, Payman, 2024. "Cooperative operation for multiple virtual power plants considering energy-carbon trading: A Nash bargaining model," Energy, Elsevier, vol. 307(C).
    5. Ma, Miaomiao & Long, Zijuan & Liu, Xiangjie & Lee, Kwang Y., 2025. "Distributionally robust optimization of electric–thermal–hydrogen integrated energy system considering source–load uncertainty," Energy, Elsevier, vol. 316(C).
    6. Ma, Lan & Xie, Lirong & Ye, Jiahao & Bian, Yifan, 2024. "Two-stage dispatching strategy for park-level integrated energy systems based on a master-slave-cooperative hybrid game model," Renewable Energy, Elsevier, vol. 232(C).
    7. Zeng, Lijun & Du, Wenjing & Zhao, Laijun & Chen, Shuai, 2024. "An inter-provincial coordinate model under Renewable Portfolio Standards policy based on tradable green certificate options trading," Renewable Energy, Elsevier, vol. 234(C).
    8. Bian, Yifan & Xie, Lirong & Ma, Lan & Zhang, Hangong, 2024. "A novel two-stage energy sharing method for data center cluster considering ‘Carbon-Green Certificate’ coupling mechanism," Energy, Elsevier, vol. 313(C).
    9. Yang, Mao & Wang, Jinxin & Chen, Yiming & Zeng, Yuxuan & Su, Xin, 2024. "Data-driven robust optimization scheduling for microgrid day-ahead to intra-day operations based on renewable energy interval prediction," Energy, Elsevier, vol. 313(C).
    10. Li, Yuxuan & Zhang, Junli & Wu, Xiao & Shen, Jiong & Maréchal, François, 2023. "Stochastic-robust planning optimization method based on tracking-economy extreme scenario tradeoff for CCHP multi-energy system," Energy, Elsevier, vol. 283(C).
    11. Qiu, Haifeng & Vinod, Ashwin & Lu, Shuai & Gooi, Hoay Beng & Pan, Guangsheng & Zhang, Suhan & Veerasamy, Veerapandiyan, 2023. "Decentralized mixed-integer optimization for robust integrated electricity and heat scheduling," Applied Energy, Elsevier, vol. 350(C).
    12. Sharma, Abhimanyu & Padhy, Narayana Prasad, 2024. "Iterative convex relaxation of unbalanced power distribution system integrated multi-energy systems," Energy, Elsevier, vol. 294(C).
    13. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    14. Che, Gelegen & Zhang, Yanyan & Tang, Lixin & Zhao, Shengnan, 2023. "A deep reinforcement learning based multi-objective optimization for the scheduling of oxygen production system in integrated iron and steel plants," Applied Energy, Elsevier, vol. 345(C).
    15. Chunyi Ji & Xinyue Wang & Wei Zhao & Xuan Wang & Wuyong Qian, 2025. "The Impact of Environmental Policies on Renewable Energy Storage Decisions in the Power Supply Chain," Energies, MDPI, vol. 18(9), pages 1-24, April.
    16. Bongsuk Sung & Hong Chen & Sang Do Park, 2024. "Who Drives Policy Discourse of China’s Energy Transition: Considering Time Series Perspective, Network and Core-Peripheral Analysis," SAGE Open, , vol. 14(2), pages 21582440241, May.
    17. Pang, Simian & Xu, Qingshan & Yang, Yongbiao & Cheng, Aoxue & Shi, Zhengkun & Shi, Yun, 2024. "Robust decomposition and tracking strategy for demand response enhanced virtual power plants," Applied Energy, Elsevier, vol. 373(C).
    18. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Cosgrove, Paul & Roulstone, Tony & Zachary, Stan, 2023. "Intermittency and periodicity in net-zero renewable energy systems with storage," Renewable Energy, Elsevier, vol. 212(C), pages 299-307.
    20. Ali Dargahi & Khezr Sanjani & Morteza Nazari-Heris & Behnam Mohammadi-Ivatloo & Sajjad Tohidi & Mousa Marzband, 2020. "Scheduling of Air Conditioning and Thermal Energy Storage Systems Considering Demand Response Programs," Sustainability, MDPI, vol. 12(18), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924022876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.