IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v325y2022ics0306261922010704.html
   My bibliography  Save this article

An efficient energy planning model optimizing cost, emission, and social impact with different carbon tax scenarios

Author

Listed:
  • Ratanakuakangwan, Sudlop
  • Morita, Hiroshi

Abstract

This study proposes a modified energy planning model that considers a broad range of future uncertainties. Modifications to hybrid stochastic robust optimization and robust optimization methodology allow for the introduction of multi-objective functions that reflect the various dimensions of energy planning including cost, emission, and social impact. A lexicographical and weighted-sum type multi-objective function are used in formulating the proposed optimization model. Changing the priorities of the objective functions generates different energy policies, which are then compared. Data envelopment analysis is applied to measure the energy efficiency of each optimal energy policy produced by the energy planning model. Energy efficiency is defined as the ability to satisfactorily address five main aspects—cost, emissions, social impact, employment, and security. An updated power development plan for Thailand is used as an illustrative case study. The empirical analysis indicates that a policy prioritizing the environment first, followed by social impact and cost, is the most efficient policy among the five alternatives considered, with an average efficiency score of 0.9988. Sensitivity analysis involving various carbon tax scenarios is used to establish the importance of weight selection in the weighted-sum method. Specifically, the empirical case study reveals that when the weighted-sum method is used, increasing the carbon tax increases the relative policy efficiency score. Results from the case study offer quantitative support for policy makers seeking to devise an efficient energy policy that meets extensive requirements while still dealing with the bounds of uncertain future projections.

Suggested Citation

  • Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2022. "An efficient energy planning model optimizing cost, emission, and social impact with different carbon tax scenarios," Applied Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922010704
    DOI: 10.1016/j.apenergy.2022.119792
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922010704
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takeshi Kawakatsu & Soochoel Lee & Sven Rudolph, 2017. "The Japanese Carbon Tax And The Challenges To Low-Carbon Policy Cooperation In East Asia," Discussion papers e-17-009, Graduate School of Economics , Kyoto University.
    2. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2017. "Comparative analysis of direct employment generated by renewable and non-renewable power plants," Energy, Elsevier, vol. 139(C), pages 542-554.
    3. Kaya, Tolga & Kahraman, Cengiz, 2010. "Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul," Energy, Elsevier, vol. 35(6), pages 2517-2527.
    4. See, Kok Fong & Coelli, Tim, 2012. "An analysis of factors that influence the technical efficiency of Malaysian thermal power plants," Energy Economics, Elsevier, vol. 34(3), pages 677-685.
    5. Sueyoshi, Toshiyuki & Goto, Mika, 2013. "Returns to scale vs. damages to scale in data envelopment analysis: An impact of U.S. clean air act on coal-fired power plants," Omega, Elsevier, vol. 41(2), pages 164-175.
    6. Zeng, Yuan & Guo, Waiying & Wang, Hongmei & Zhang, Fengbin, 2020. "A two-stage evaluation and optimization method for renewable energy development based on data envelopment analysis," Applied Energy, Elsevier, vol. 262(C).
    7. Thangavelu, Sundar Raj & Khambadkone, Ashwin M. & Karimi, Iftekhar A., 2015. "Long-term optimal energy mix planning towards high energy security and low GHG emission," Applied Energy, Elsevier, vol. 154(C), pages 959-969.
    8. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2021. "Hybrid stochastic robust optimization and robust optimization for energy planning – A social impact-constrained case study," Applied Energy, Elsevier, vol. 298(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tom Savage & Antonio del Rio Chanona & Gbemi Oluleye, 2023. "Robust Market Potential Assessment: Designing optimal policies for low-carbon technology adoption in an increasingly uncertain world," Papers 2304.10203, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2022. "Multi-aspect efficiency measurement of multi-objective energy planning model dealing with uncertainties," Applied Energy, Elsevier, vol. 313(C).
    2. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Yung-Hsiang Lu & Ku-Hsieh Chen & Jen-Chi Cheng & Chih-Chun Chen & Sian-Yuan Li, 2019. "Analysis of Environmental Productivity on Fossil Fuel Power Plants in the U.S," Sustainability, MDPI, vol. 11(24), pages 1-27, December.
    4. Yu, Bolin & Fang, Debin & Meng, Jingxuan, 2021. "Analysis of the generation efficiency of disaggregated renewable energy and its spatial heterogeneity influencing factors: A case study of China," Energy, Elsevier, vol. 234(C).
    5. Bojana Škrbić & Željko Đurišić, 2023. "Novel Planning Methodology for Spatially Optimized RES Development Which Minimizes Flexibility Requirements for Their Integration into the Power System," Energies, MDPI, vol. 16(7), pages 1-34, April.
    6. Bohlmann, H.R. & Horridge, J.M. & Inglesi-Lotz, R. & Roos, E.L. & Stander, L., 2019. "Regional employment and economic growth effects of South Africa’s transition to low-carbon energy supply mix," Energy Policy, Elsevier, vol. 128(C), pages 830-837.
    7. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    8. Capellán-Pérez, Iñigo & Campos-Celador, Álvaro & Terés-Zubiaga, Jon, 2018. "Renewable Energy Cooperatives as an instrument towards the energy transition in Spain," Energy Policy, Elsevier, vol. 123(C), pages 215-229.
    9. Irawan, Chandra Ade & Jones, Dylan & Hofman, Peter S. & Zhang, Lina, 2023. "Integrated strategic energy mix and energy generation planning with multiple sustainability criteria and hierarchical stakeholders," European Journal of Operational Research, Elsevier, vol. 308(2), pages 864-883.
    10. Chinese, Damiana & Nardin, Gioacchino & Saro, Onorio, 2011. "Multi-criteria analysis for the selection of space heating systems in an industrial building," Energy, Elsevier, vol. 36(1), pages 556-565.
    11. Oh, Dong-hyun, 2015. "Productivity growth, technical change and economies of scale of Korean fossil-fuel generation companies, 2001–2012: A dual approach," Energy Economics, Elsevier, vol. 49(C), pages 113-121.
    12. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    13. González-Limón, José Manuel & Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2013. "Understanding local adoption of tax credits to promote solar-thermal energy: Spanish municipalities' case," Energy, Elsevier, vol. 62(C), pages 277-284.
    14. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    15. Muhammad Riaz & Wojciech Sałabun & Hafiz Muhammad Athar Farid & Nawazish Ali & Jarosław Wątróbski, 2020. "A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management," Energies, MDPI, vol. 13(9), pages 1-39, May.
    16. Deveci, Muhammet & Cali, Umit & Kucuksari, Sadik & Erdogan, Nuh, 2020. "Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland," Energy, Elsevier, vol. 198(C).
    17. Caetani, Alberto Pavlick & Ferreira, Luciano & Borenstein, Denis, 2016. "Development of an integrated decision-making method for an oil refinery restructuring in Brazil," Energy, Elsevier, vol. 111(C), pages 197-210.
    18. Li, Jianglong & Lin, Boqiang, 2017. "Does energy and CO2 emissions performance of China benefit from regional integration?," Energy Policy, Elsevier, vol. 101(C), pages 366-378.
    19. repec:eco:journ2:2017-04-06 is not listed on IDEAS
    20. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    21. Marcin Rabe & Dalia Streimikiene & Yuriy Bilan, 2019. "The Concept of Risk and Possibilities of Application of Mathematical Methods in Supporting Decision Making for Sustainable Energy Development," Sustainability, MDPI, vol. 11(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922010704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.