IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924024966.html
   My bibliography  Save this article

Assessing energy economic and environmental impacts of GHG emission reduction targets across Canadian provinces: A national net-zeroization-oriented energy model

Author

Listed:
  • Dong, Cong
  • Huang, Gordon
  • Cheng, Guanhui
  • Cai, Yanpeng
  • Chen, Cong
  • Zhu, Jinxin

Abstract

Canada committed to achieve net-zero emissions by 2050, but lacks a sophisticated national-scale energy model to identify optimal transition pathways of the national energy system. To fill this gap, we develop the Canadian Energy Economic and Environmental System Planning Model (Canada-3ESP), a national net-zeroization-oriented energy model designed to facilitate the transition. This model simulates energy flows, greenhouse gas emissions, and economic revenues, refining them with emerging energy technologies across provinces and territories from 2021 to 2050. The model quantitatively characterizes various complexities of the system over both land and marine areas. Through scenario analyses, we assess impacts of different emission-reduction targets on the system, and explore transition strategies such as deployment of renewable energies and carbon-negative technologies (e.g., carbon capture, utilization and storage). Validation against real data from the International Energy Agency strengthens the model's reliability for energy policy formulation. This study finds that, although developing hydropower and phasing out coal-fired generation help meet non-net-zero targets, achieving net-zero emissions requires further decarbonization efforts. Electrification is to be promoted, such as a high electrification rate of 83 % for the transportation sector by 2050, reducing the need for hydrogen and refined petroleum products. To reach net-zero emissions, significant reductions in greenhouse gas emissions are needed, including a 34 % reduction by 2030 and an 81 % reduction by 2050 compared to 2021 levels. The reductions mainly originate from Alberta, Quebec, Ontario, British Columbia, and Saskatchewan. The model aids in crafting a long-term national strategy for sustainable development across all regions. Its insights support informed decision-making, paving the way for sustaining the energy future of Canada.

Suggested Citation

  • Dong, Cong & Huang, Gordon & Cheng, Guanhui & Cai, Yanpeng & Chen, Cong & Zhu, Jinxin, 2025. "Assessing energy economic and environmental impacts of GHG emission reduction targets across Canadian provinces: A national net-zeroization-oriented energy model," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924024966
    DOI: 10.1016/j.apenergy.2024.125112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924024966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    2. Dong, Cong & Huang, Guohe (Gordon) & Cheng, Guanhui, 2021. "Offshore wind can power Canada," Energy, Elsevier, vol. 236(C).
    3. Jordaan, Sarah M. & Romo-Rabago, Elizabeth & McLeary, Romaine & Reidy, Luke & Nazari, Jamal & Herremans, Irene M., 2017. "The role of energy technology innovation in reducing greenhouse gas emissions: A case study of Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1397-1409.
    4. Barrington-Leigh, Christopher & Ouliaris, Mark, 2017. "The renewable energy landscape in Canada: A spatial analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 809-819.
    5. Julianne DeAngelo & Inês Azevedo & John Bistline & Leon Clarke & Gunnar Luderer & Edward Byers & Steven J. Davis, 2021. "Energy systems in scenarios at net-zero CO2 emissions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Zhan, Jinyan & Wang, Chao & Wang, Huihui & Zhang, Fan & Li, Zhihui, 2024. "Pathways to achieve carbon emission peak and carbon neutrality by 2060: A case study in the Beijing-Tianjin-Hebei region, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Wang, Zhaohua & Zhang, Hongzhi & Li, Hao & Wang, Bo & Cui, Qi & Zhang, Bin, 2022. "Economic impact and energy transformation of different effort-sharing schemes to pursue 2 ℃ warming limit in China," Applied Energy, Elsevier, vol. 320(C).
    8. Teng Ma & Silu Zhang & Yilong Xiao & Xiaorui Liu & Minghao Wang & Kai Wu & Guofeng Shen & Chen Huang & Yan Ru Fang & Yang Xie, 2023. "Costs and health benefits of the rural energy transition to carbon neutrality in China," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Tan, Chang & Yu, Xiang & Guan, Yuru, 2022. "A technology-driven pathway to net-zero carbon emissions for China's cement industry," Applied Energy, Elsevier, vol. 325(C).
    10. Jia, Zhijie & Lin, Boqiang & Wen, Shiyan, 2022. "Electricity market Reform: The perspective of price regulation and carbon neutrality," Applied Energy, Elsevier, vol. 328(C).
    11. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    12. Ozawa, A. & Tsani, T. & Kudoh, Y., 2022. "Japan's pathways to achieve carbon neutrality by 2050 – Scenario analysis using an energy modeling methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    13. Helgesen, Per Ivar & Tomasgard, Asgeir, 2018. "From linking to integration of energy system models and computational general equilibrium models – Effects on equilibria and convergence," Energy, Elsevier, vol. 159(C), pages 1218-1233.
    14. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2022. "An efficient energy planning model optimizing cost, emission, and social impact with different carbon tax scenarios," Applied Energy, Elsevier, vol. 325(C).
    15. Laurent Drouet & Valentina Bosetti & Simone A. Padoan & Lara Aleluia Reis & Christoph Bertram & Francesco Dalla Longa & Jacques Després & Johannes Emmerling & Florian Fosse & Kostas Fragkiadakis & Ste, 2021. "Net zero-emission pathways reduce the physical and economic risks of climate change," Nature Climate Change, Nature, vol. 11(12), pages 1070-1076, December.
    16. St. Denis, Genevieve & Parker, Paul, 2009. "Community energy planning in Canada: The role of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2088-2095, October.
    17. Steve Pye & Francis G. N. Li & James Price & Birgit Fais, 2017. "Achieving net-zero emissions through the reframing of UK national targets in the post-Paris Agreement era," Nature Energy, Nature, vol. 2(3), pages 1-7, March.
    18. Gao, Zhiyuan & Zhao, Ying & Li, Lianqing & Hao, Yu, 2024. "Economic effects of sustainable energy technology progress under carbon reduction targets: An analysis based on a dynamic multi-regional CGE model," Applied Energy, Elsevier, vol. 363(C).
    19. Yang, Chuxiao & Hao, Yu & Irfan, Muhammad, 2021. "Energy consumption structural adjustment and carbon neutrality in the post-COVID-19 era," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 442-453.
    20. Wang, Qiang & Zhang, Chen & Li, Rongrong, 2022. "Towards carbon neutrality by improving carbon efficiency - A system-GMM dynamic panel analysis for 131 countries’ carbon efficiency," Energy, Elsevier, vol. 258(C).
    21. Victor, Nadejda & Nichols, Christopher & Zelek, Charles, 2018. "The U.S. power sector decarbonization: Investigating technology options with MARKAL nine-region model," Energy Economics, Elsevier, vol. 73(C), pages 410-425.
    22. Capros, Pantelis & Zazias, Georgios & Evangelopoulou, Stavroula & Kannavou, Maria & Fotiou, Theofano & Siskos, Pelopidas & De Vita, Alessia & Sakellaris, Konstantinos, 2019. "Energy-system modelling of the EU strategy towards climate-neutrality," Energy Policy, Elsevier, vol. 134(C).
    23. Tattini, Jacopo & Gargiulo, Maurizio & Karlsson, Kenneth, 2018. "Reaching carbon neutral transport sector in Denmark – Evidence from the incorporation of modal shift into the TIMES energy system modeling framework," Energy Policy, Elsevier, vol. 113(C), pages 571-583.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Artur Pawłowski & Paweł Rydzewski, 2024. "Pathways to Carbon Neutrality: Integrating Energy Strategies, Policy, and Public Perception in the Face of Climate Change—A Global Perspective," Energies, MDPI, vol. 17(23), pages 1-31, November.
    2. Hoicka, Christina E. & Graziano, Marcello & Willard-Stepan, Maya & Zhao, Yuxu, 2025. "Insights to accelerate place-based at scale renewable energy landscapes: An analytical framework to typify the emergence of renewable energy clusters along the energy value chain," Applied Energy, Elsevier, vol. 377(PC).
    3. Zhong, Zhiqi & Chen, Yongqiang & Fu, Meiyan & Li, Minzhen & Yang, Kaishuo & Zeng, Lingping & Liang, Jing & Ma, Rupeng & Xie, Quan, 2023. "Role of CO2 geological storage in China's pledge to carbon peak by 2030 and carbon neutrality by 2060," Energy, Elsevier, vol. 272(C).
    4. Xiao, Jin & Li, Guohao & Xie, Ling & Wang, Shouyang & Yu, Lean, 2021. "Decarbonizing China's power sector by 2030 with consideration of technological progress and cross-regional power transmission," Energy Policy, Elsevier, vol. 150(C).
    5. Bekirsky, N. & Hoicka, C.E. & Brisbois, M.C. & Ramirez Camargo, L., 2022. "Many actors amongst multiple renewables: A systematic review of actor involvement in complementarity of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Chen, Jiandong & Xu, Chong & Wang, Yuzhi & Li, Ding & Song, Malin, 2021. "Carbon neutrality based on vegetation carbon sequestration for China's cities and counties: Trend, inequality and driver," Resources Policy, Elsevier, vol. 74(C).
    7. Ozawa, A. & Tsani, T. & Kudoh, Y., 2022. "Japan's pathways to achieve carbon neutrality by 2050 – Scenario analysis using an energy modeling methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    8. Rosendal, M. & Janin, J. & Heggarty, T. & Pisinger, D. & Bramstoft, R. & Münster, M., 2025. "The benefits and challenges of soft-linking investment and operational energy system models," Applied Energy, Elsevier, vol. 385(C).
    9. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    10. Yanguas Parra, Paola & Hauenstein, Christian & Oei, Pao-Yu, 2021. "The death valley of coal – Modelling COVID-19 recovery scenarios for steam coal markets," Applied Energy, Elsevier, vol. 288(C).
    11. Le Sun & Congmou Zhu & Shaofeng Yuan & Lixia Yang & Shan He & Wuyan Li, 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    12. Yingge Zhang & Zhihu Xia & Yanni Li & Anmai Dai & Jie Wang, 2023. "Sustainable Digital Marketing Model of Geoenergy Resources under Carbon Neutrality Target," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    13. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    14. Klein, Sharon J.W. & Coffey, Stephanie, 2016. "Building a sustainable energy future, one community at a time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 867-880.
    15. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    16. Tattini, Jacopo & Ramea, Kalai & Gargiulo, Maurizio & Yang, Christopher & Mulholland, Eamonn & Yeh, Sonia & Karlsson, Kenneth, 2018. "Improving the representation of modal choice into bottom-up optimization energy system models – The MoCho-TIMES model," Applied Energy, Elsevier, vol. 212(C), pages 265-282.
    17. Xin Su & Frédéric Ghersi & Fei Teng & Gaëlle Treut & Meicong Liang, 2022. "The economic impact of a deep decarbonisation pathway for China: a hybrid model analysis through bottom-up and top-down linking," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-37, January.
    18. Xia, Chunxun & Balsalobre-Lorente, Daniel & Raza Syed, Qasim, 2025. "Electricity generation from renewable and non-renewable energy sources in China: The role of environmental policy stringency, FDI, and economic growth," Energy, Elsevier, vol. 318(C).
    19. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    20. Zapata, Oscar, 2022. "Renewable Energy and Community Development," OSF Preprints tk59y, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924024966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.