IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v385y2025ics0306261925002429.html
   My bibliography  Save this article

The benefits and challenges of soft-linking investment and operational energy system models

Author

Listed:
  • Rosendal, M.
  • Janin, J.
  • Heggarty, T.
  • Pisinger, D.
  • Bramstoft, R.
  • Münster, M.

Abstract

Large-scale energy system modelling is often applied to inform decision-making in the green transition. Energy system models tend to increase in complexity at the expense of increased computation time. Soft-linking of energy systems models is frequently applied to increase the modelling scope and thereby answer complex research questions while maintaining tractability. However, evaluations of the soft-linking strategy itself are rarely investigated or documented. We, therefore, explore the benefits and challenges of soft-linking through assessment of a bi-directional soft-linking framework for an integrated, pan-European electricity and hydrogen system. The frameworks Balmorel and Antares are chosen as components in the bi-directional soft-linking framework, with harmonised input data and spatial resolutions. Conversion, storage and transmission investments are computed in Balmorel based on one representative weather year and aggregated timeslices. These investments are subsequently evaluated over 31 historical weather years at full hourly resolution in Antares. Different strategies for increasing the potentially inadequate investments by Balmorel are analysed. This includes previously applied methods based on so-called capacity credits and profit signals. We also introduce a novel ’fictive demand’ approach, and the results and computation times are discussed using a low loss of load expectancy (LOLE) in electricity and hydrogen as a key performance indicator. The fictive demand method proved stable across multiple iterations and successfully reduced LOLE, while the capacity credit showed some promise. Finally, recommendations for soft-linking studies are formulated, and we argue that soft-linking enables large-scale problems to be investigated, but the necessary model harmonisations, choice of specific soft-linking strategy, and tuning of it present significant challenges.

Suggested Citation

  • Rosendal, M. & Janin, J. & Heggarty, T. & Pisinger, D. & Bramstoft, R. & Münster, M., 2025. "The benefits and challenges of soft-linking investment and operational energy system models," Applied Energy, Elsevier, vol. 385(C).
  • Handle: RePEc:eee:appene:v:385:y:2025:i:c:s0306261925002429
    DOI: 10.1016/j.apenergy.2025.125512
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925002429
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125512?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    2. Lester, Mason Scott & Bramstoft, Rasmus & Münster, Marie, 2020. "Analysis on Electrofuels in Future Energy Systems: A 2050 Case Study," Energy, Elsevier, vol. 199(C).
    3. Hoffmann, Maximilian & Kotzur, Leander & Stolten, Detlef, 2022. "The Pareto-optimal temporal aggregation of energy system models," Applied Energy, Elsevier, vol. 315(C).
    4. van Ouwerkerk, Jonas & Hainsch, Karlo & Candas, Soner & Muschner, Christoph & Buchholz, Stefanie & Günther, Stephan & Huyskens, Hendrik & Berendes, Sarah & Löffler, Konstantin & Bußar, Christian & Tar, 2022. "Comparing open source power system models - A case study focusing on fundamental modeling parameters for the German energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Pina, André & Silva, Carlos A. & Ferrão, Paulo, 2013. "High-resolution modeling framework for planning electricity systems with high penetration of renewables," Applied Energy, Elsevier, vol. 112(C), pages 215-223.
    6. Fortes, Patrícia & Pereira, Rui & Pereira, Alfredo & Seixas, Júlia, 2014. "Integrated technological-economic modeling platform for energy and climate policy analysis," Energy, Elsevier, vol. 73(C), pages 716-730.
    7. Ioannis Kountouris & Rasmus Bramstoft & Theis Madsen & Juan Gea-Bermúdez & Marie Münster & Dogan Keles, 2024. "A unified European hydrogen infrastructure planning to support the rapid scale-up of hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Thompson, Erica L. & Smith, Leonard A., 2019. "Escape from model-land," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 13, pages 1-17.
    9. Gea-Bermúdez, Juan & Jensen, Ida Græsted & Münster, Marie & Koivisto, Matti & Kirkerud, Jon Gustav & Chen, Yi-kuang & Ravn, Hans, 2021. "The role of sector coupling in the green transition: A least-cost energy system development in Northern-central Europe towards 2050," Applied Energy, Elsevier, vol. 289(C).
    10. Gjorgiev, Blazhe & Garrison, Jared B. & Han, Xuejiao & Landis, Florian & van Nieuwkoop, Renger & Raycheva, Elena & Schwarz, Marius & Yan, Xuqian & Demiray, Turhan & Hug, Gabriela & Sansavini, Giovanni, 2022. "Nexus-e: A platform of interfaced high-resolution models for energy-economic assessments of future electricity systems," Applied Energy, Elsevier, vol. 307(C).
    11. Rosendal, Mathias Berg & Münster, Marie & Bramstoft, Rasmus, 2024. "Renewable fuel production and the impact of hydrogen infrastructure — A case study of the Nordics," Energy, Elsevier, vol. 297(C).
    12. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2020. "Quantifying power system flexibility provision," Applied Energy, Elsevier, vol. 279(C).
    13. Bramstoft, Rasmus & Pizarro-Alonso, Amalia & Jensen, Ida Græsted & Ravn, Hans & Münster, Marie, 2020. "Modelling of renewable gas and renewable liquid fuels in future integrated energy systems," Applied Energy, Elsevier, vol. 268(C).
    14. Neumann, Fabian & Hagenmeyer, Veit & Brown, Tom, 2022. "Assessments of linear power flow and transmission loss approximations in coordinated capacity expansion problems," Applied Energy, Elsevier, vol. 314(C).
    15. Riekkola, Anna Krook & Berg, Charlotte & Ahlgren, Erik O. & Söderholm, Patrik, 2013. "Challenges in Soft-Linking: The Case of EMEC and TIMES-Sweden," Working Papers 133, National Institute of Economic Research.
    16. Helgesen, Per Ivar & Tomasgard, Asgeir, 2018. "From linking to integration of energy system models and computational general equilibrium models – Effects on equilibria and convergence," Energy, Elsevier, vol. 159(C), pages 1218-1233.
    17. Müller, C. & Hoffrichter, A. & Wyrwoll, L. & Schmitt, C. & Trageser, M. & Kulms, T. & Beulertz, D. & Metzger, M. & Duckheim, M. & Huber, M. & Küppers, M. & Most, D. & Paulus, S. & Heger, H.J. & Schnet, 2019. "Modeling framework for planning and operation of multi-modal energy systems in the case of Germany," Applied Energy, Elsevier, vol. 250(C), pages 1132-1146.
    18. Seljom, Pernille & Rosenberg, Eva & Schäffer, Linn Emelie & Fodstad, Marte, 2020. "Bidirectional linkage between a long-term energy system and a short-term power market model," Energy, Elsevier, vol. 198(C).
    19. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2019. "Multi-temporal assessment of power system flexibility requirement," Applied Energy, Elsevier, vol. 238(C), pages 1327-1336.
    21. Alimou, Yacine & Maïzi, Nadia & Bourmaud, Jean-Yves & Li, Marion, 2020. "Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach," Applied Energy, Elsevier, vol. 279(C).
    22. Candas, Soner & Muschner, Christoph & Buchholz, Stefanie & Bramstoft, Rasmus & van Ouwerkerk, Jonas & Hainsch, Karlo & Löffler, Konstantin & Günther, Stephan & Berendes, Sarah & Nguyen, Stefanie & Jus, 2022. "Code exposed: Review of five open-source frameworks for modeling renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    23. Thompson, Erica L. & Smith, Leonard A., 2019. "Escape from model-land," LSE Research Online Documents on Economics 103310, London School of Economics and Political Science, LSE Library.
    24. Thompson, Erica L. & Smith, Leonard A., 2019. "Escape from model-land," Economics Discussion Papers 2019-23, Kiel Institute for the World Economy (IfW Kiel).
    25. Bogdanov, Dmitrii & Oyewo, Ayobami Solomon & Breyer, Christian, 2023. "Hierarchical approach to energy system modelling: Complexity reduction with minor changes in results," Energy, Elsevier, vol. 273(C).
    26. Gea-Bermúdez, Juan & Bramstoft, Rasmus & Koivisto, Matti & Kitzing, Lena & Ramos, Andrés, 2023. "Going offshore or not: Where to generate hydrogen in future integrated energy systems?," Energy Policy, Elsevier, vol. 174(C).
    27. Sifnaios, Ioannis & Sneum, Daniel Møller & Jensen, Adam R. & Fan, Jianhua & Bramstoft, Rasmus, 2023. "The impact of large-scale thermal energy storage in the energy system," Applied Energy, Elsevier, vol. 349(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madsen, Theis & Kountouris, Ioannis & Bramstoft, Rasmus & Koundouri, Phoebe & Keles, Dogan, 2025. "European or national-level emission reduction policy? Effectiveness and energy system implications," Applied Energy, Elsevier, vol. 388(C).
    2. Javanmardi, Komar & van der Hilst, Floor & Fattahi, Amir & Camargo, Luis Ramirez & Faaij, André, 2025. "Unraveling the spatial complexity of national energy system models: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    3. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    4. Gea-Bermúdez, Juan & Bramstoft, Rasmus & Koivisto, Matti & Kitzing, Lena & Ramos, Andrés, 2023. "Going offshore or not: Where to generate hydrogen in future integrated energy systems?," Energy Policy, Elsevier, vol. 174(C).
    5. Koumparakis, Christos & Kountouris, Ioannis & Bramstoft, Rasmus, 2025. "Utilization of excess heat in future Power-to-X energy hubs through sector-coupling," Applied Energy, Elsevier, vol. 377(PA).
    6. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Energy, Elsevier, vol. 290(C).
    7. Thomas Heggarty & Jean-Yves Bourmaud & Robin Girard & Georges Kariniotakis, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Post-Print hal-04383397, HAL.
    8. Sifnaios, Ioannis & Sneum, Daniel Møller & Jensen, Adam R. & Fan, Jianhua & Bramstoft, Rasmus, 2023. "The impact of large-scale thermal energy storage in the energy system," Applied Energy, Elsevier, vol. 349(C).
    9. Ioannis Kountouris & Rasmus Bramstoft & Theis Madsen & Juan Gea-Bermúdez & Marie Münster & Dogan Keles, 2024. "A unified European hydrogen infrastructure planning to support the rapid scale-up of hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Sangha, Laljeet & Shortridge, Julie, 2023. "Quantification of unreported water use for supplemental crop irrigation in humid climates using publicly available agricultural data," Agricultural Water Management, Elsevier, vol. 287(C).
    11. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    12. Mertens, Tim & Poncelet, Kris & Duerinck, Jan & Delarue, Erik, 2020. "Representing cross-border trade of electricity in long-term energy-system optimization models with a limited geographical scope," Applied Energy, Elsevier, vol. 261(C).
    13. Gorman, Nicholas & MacGill, Iain & Bruce, Anna, 2024. "Re-dispatch simplification analysis: Confirmation holism and assessing the impact of simplifications on energy system model performance," Applied Energy, Elsevier, vol. 365(C).
    14. Glette-Iversen, Ingrid & Aven, Terje, 2021. "On the meaning of and relationship between dragon-kings, black swans and related concepts," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    15. Marina Baldissera Pacchetti & Suraje Dessai & David A. Stainforth & Seamus Bradley, 2021. "Assessing the quality of state-of-the-art regional climate information: the case of the UK Climate Projections 2018," Climatic Change, Springer, vol. 168(1), pages 1-25, September.
    16. Campion, Nicolas & Montanari, Giulia & Guzzini, Alessandro & Visser, Lennard & Alcayde, Alfredo, 2025. "Green hydrogen techno-economic assessments from simulated and measured solar photovoltaic power profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    17. Joel Katzav & Erica L. Thompson & James Risbey & David A. Stainforth & Seamus Bradley & Mathias Frisch, 2021. "On the appropriate and inappropriate uses of probability distributions in climate projections and some alternatives," Climatic Change, Springer, vol. 169(1), pages 1-20, November.
    18. Lv, Fei & Wu, Qiong & Ren, Hongbo & Zhou, Weisheng & Li, Qifen, 2024. "On the design and analysis of long-term low-carbon roadmaps: A review and evaluation of available energy-economy-environment models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    19. Charlie Wilson & Céline Guivarch & Elmar Kriegler & Bas Ruijven & Detlef P. Vuuren & Volker Krey & Valeria Jana Schwanitz & Erica L. Thompson, 2021. "Evaluating process-based integrated assessment models of climate change mitigation," Climatic Change, Springer, vol. 166(1), pages 1-22, May.
    20. Rosendal, Mathias Berg & Münster, Marie & Bramstoft, Rasmus, 2024. "Renewable fuel production and the impact of hydrogen infrastructure — A case study of the Nordics," Energy, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:385:y:2025:i:c:s0306261925002429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.