IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v308y2023i2p864-883.html
   My bibliography  Save this article

Integrated strategic energy mix and energy generation planning with multiple sustainability criteria and hierarchical stakeholders

Author

Listed:
  • Irawan, Chandra Ade
  • Jones, Dylan
  • Hofman, Peter S.
  • Zhang, Lina

Abstract

This paper proposes a combination of two optimization models for simultaneously determining strategic energy planning at both national and regional levels. The first model deals with a single-period energy mix where the electricity production configuration at a future date (e.g., 2050), based on the available generation sources, is optimally obtained. An optimization model, based on a non-linear goal programming method, is designed to ensure a mixed balance between national and regional goals. The desired energy mix configuration, which is the solution obtained by solving the first model, is then fed into the second model as the main data input. In the second model, a multiple-period generation expansion plan is designed which optimizes the energy transition over the time horizon from the present until the future planning date (2050). The model considers uncertain parameters, including the regional energy demand, fuel cost, and national peak load. A two-stage stochastic programming model is developed where the sample average approximation approach is used as a method of solution. The practical use of the proposed models has been assessed through application to the electricity generation system in China.

Suggested Citation

  • Irawan, Chandra Ade & Jones, Dylan & Hofman, Peter S. & Zhang, Lina, 2023. "Integrated strategic energy mix and energy generation planning with multiple sustainability criteria and hierarchical stakeholders," European Journal of Operational Research, Elsevier, vol. 308(2), pages 864-883.
  • Handle: RePEc:eee:ejores:v:308:y:2023:i:2:p:864-883
    DOI: 10.1016/j.ejor.2022.11.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722009183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.11.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.
    2. Streimikiene, Dalia & Balezentis, Tomas & Krisciukaitienė, Irena & Balezentis, Alvydas, 2012. "Prioritizing sustainable electricity production technologies: MCDM approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3302-3311.
    3. Özcan, Evren Can & Ünlüsoy, Sultan & Eren, Tamer, 2017. "A combined goal programming – AHP approach supported with TOPSIS for maintenance strategy selection in hydroelectric power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1410-1423.
    4. Sujin Kim & Raghu Pasupathy & Shane G. Henderson, 2015. "A Guide to Sample Average Approximation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 207-243, Springer.
    5. Smriti Mallapaty, 2020. "How China could be carbon neutral by mid-century," Nature, Nature, vol. 586(7830), pages 482-483, October.
    6. Li, G.C. & Huang, G.H. & Sun, W. & Ding, X.W., 2014. "An inexact optimization model for energy-environment systems management in the mixed fuzzy, dual-interval and stochastic environment," Renewable Energy, Elsevier, vol. 64(C), pages 153-163.
    7. Ioannou, Anastasia & Fuzuli, Gulistiani & Brennan, Feargal & Yudha, Satya Widya & Angus, Andrew, 2019. "Multi-stage stochastic optimization framework for power generation system planning integrating hybrid uncertainty modelling," Energy Economics, Elsevier, vol. 80(C), pages 760-776.
    8. Lugovoy, Oleg & Gao, Shuo & Gao, Ji & Jiang, Kejun, 2021. "Feasibility study of China's electric power sector transition to zero emissions by 2050," Energy Economics, Elsevier, vol. 96(C).
    9. Moreira, Alexandre & Pozo, David & Street, Alexandre & Sauma, Enzo & Strbac, Goran, 2021. "Climate‐aware generation and transmission expansion planning: A three‐stage robust optimization approach," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1099-1118.
    10. Yi, Bo-Wen & Xu, Jin-Hua & Fan, Ying, 2016. "Inter-regional power grid planning up to 2030 in China considering renewable energy development and regional pollutant control: A multi-region bottom-up optimization model," Applied Energy, Elsevier, vol. 184(C), pages 641-658.
    11. Min, Daiki & Chung, Jaewoo, 2013. "Evaluation of the long-term power generation mix: The case study of South Korea's energy policy," Energy Policy, Elsevier, vol. 62(C), pages 1544-1552.
    12. Thangavelu, Sundar Raj & Khambadkone, Ashwin M. & Karimi, Iftekhar A., 2015. "Long-term optimal energy mix planning towards high energy security and low GHG emission," Applied Energy, Elsevier, vol. 154(C), pages 959-969.
    13. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    14. Jones, Dylan & Florentino, Helenice & Cantane, Daniela & Oliveira, Rogerio, 2016. "An extended goal programming methodology for analysis of a network encompassing multiple objectives and stakeholders," European Journal of Operational Research, Elsevier, vol. 255(3), pages 845-855.
    15. Chandra Ade Irawan & Peter S. Hofman & Hing Kai Chan & Antony Paulraj, 2022. "A stochastic programming model for an energy planning problem: formulation, solution method and application," Annals of Operations Research, Springer, vol. 311(2), pages 695-730, April.
    16. Zhang, Yaru & Ma, Tieju & Guo, Fei, 2018. "A multi-regional energy transport and structure model for China’s electricity system," Energy, Elsevier, vol. 161(C), pages 907-919.
    17. Moret, Stefano & Babonneau, Frédéric & Bierlaire, Michel & Maréchal, François, 2020. "Decision support for strategic energy planning: A robust optimization framework," European Journal of Operational Research, Elsevier, vol. 280(2), pages 539-554.
    18. Rentizelas, Athanasios A. & Tolis, Athanasios I. & Tatsiopoulos, Ilias P., 2012. "Investment planning in electricity production under CO2 price uncertainty," International Journal of Production Economics, Elsevier, vol. 140(2), pages 622-629.
    19. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    20. Krukanont, Pongsak & Tezuka, Tetsuo, 2007. "Implications of capacity expansion under uncertainty and value of information: The near-term energy planning of Japan," Energy, Elsevier, vol. 32(10), pages 1809-1824.
    21. Topham, Eva & McMillan, David, 2017. "Sustainable decommissioning of an offshore wind farm," Renewable Energy, Elsevier, vol. 102(PB), pages 470-480.
    22. Costa, Oswaldo L.V. & de Oliveira Ribeiro, Celma & Rego, Erik Eduardo & Stern, Julio Michael & Parente, Virginia & Kileber, Solange, 2017. "Robust portfolio optimization for electricity planning: An application based on the Brazilian electricity mix," Energy Economics, Elsevier, vol. 64(C), pages 158-169.
    23. Lin, Jiang & Kahrl, Fredrich & Yuan, Jiahai & Chen, Qixin & Liu, Xu, 2019. "Economic and carbon emission impacts of electricity market transition in China: A case study of Guangdong Province," Applied Energy, Elsevier, vol. 238(C), pages 1093-1107.
    24. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    25. Li, Y.F. & Huang, G.H. & Li, Y.P. & Xu, Y. & Chen, W.T., 2010. "Regional-scale electric power system planning under uncertainty--A multistage interval-stochastic integer linear programming approach," Energy Policy, Elsevier, vol. 38(1), pages 475-490, January.
    26. Ichiro Kutani & Mitsuru Motokura & Naoki Okubo, 2016. "Cost Assessment of Energy Security Improvement in East Asia Summit Region," Books, Economic Research Institute for ASEAN and East Asia (ERIA), number 2015-rpr-06 edited by Ichiro Kutani & Mitsuru Motokura & Naoki Okubo, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chandra Ade Irawan & Peter S. Hofman & Hing Kai Chan & Antony Paulraj, 2022. "A stochastic programming model for an energy planning problem: formulation, solution method and application," Annals of Operations Research, Springer, vol. 311(2), pages 695-730, April.
    2. Ioannou, Anastasia & Fuzuli, Gulistiani & Brennan, Feargal & Yudha, Satya Widya & Angus, Andrew, 2019. "Multi-stage stochastic optimization framework for power generation system planning integrating hybrid uncertainty modelling," Energy Economics, Elsevier, vol. 80(C), pages 760-776.
    3. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    4. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2021. "Hybrid stochastic robust optimization and robust optimization for energy planning – A social impact-constrained case study," Applied Energy, Elsevier, vol. 298(C).
    5. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    7. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    8. Kim, Dowon & Ryu, Heelang & Lee, Jiwoong & Kim, Kyoung-Kuk, 2022. "Balancing risk: Generation expansion planning under climate mitigation scenarios," European Journal of Operational Research, Elsevier, vol. 297(2), pages 665-679.
    9. Selçuklu, Saltuk Buğra & Coit, D.W. & Felder, F.A., 2023. "Electricity generation portfolio planning and policy implications of Turkish power system considering cost, emission, and uncertainty," Energy Policy, Elsevier, vol. 173(C).
    10. Scott, Ian J. & Botterud, Audun & Carvalho, Pedro M.S. & Silva, Carlos A. Santos, 2020. "Renewable energy support policy evaluation: The role of long-term uncertainty in market modelling," Applied Energy, Elsevier, vol. 278(C).
    11. Buchholz, Stefanie & Gamst, Mette & Pisinger, David, 2020. "Sensitivity analysis of time aggregation techniques applied to capacity expansion energy system models," Applied Energy, Elsevier, vol. 269(C).
    12. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    13. Marcin Rabe & Dalia Streimikiene & Yuriy Bilan, 2019. "The Concept of Risk and Possibilities of Application of Mathematical Methods in Supporting Decision Making for Sustainable Energy Development," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    14. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    15. Botor, Benjamin & Böcker, Benjamin & Kallabis, Thomas & Weber, Christoph, 2021. "Information shocks and profitability risks for power plant investments – impacts of policy instruments," Energy Economics, Elsevier, vol. 102(C).
    16. Yao, Xing & Yi, Bowen & Yu, Yang & Fan, Ying & Zhu, Lei, 2020. "Economic analysis of grid integration of variable solar and wind power with conventional power system," Applied Energy, Elsevier, vol. 264(C).
    17. Keller, Victor & English, Jeffrey & Fernandez, Julian & Wade, Cameron & Fowler, McKenzie & Scholtysik, Sven & Palmer-Wilson, Kevin & Donald, James & Robertson, Bryson & Wild, Peter & Crawford, Curran , 2019. "Electrification of road transportation with utility controlled charging: A case study for British Columbia with a 93% renewable electricity target," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    19. van Ouwerkerk, Jonas & Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Torralba-Díaz, Laura & Bußar, Christian, 2022. "Impacts of power sector model features on optimal capacity expansion: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    20. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:308:y:2023:i:2:p:864-883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.